Oceans may soon be more corrosive than when the dinosaurs died

February 20, 2006

Increased carbon dioxide emissions are rapidly making the world's oceans more acidic and, if unabated, could cause a mass extinction of marine life similar to one that occurred 65 million years ago when the dinosaurs disappeared. Ken Caldeira of the Carnegie Institution's Department of Global Ecology will present this research at the AGU/ASLO Ocean Sciences meeting in Honolulu, HI on Monday, Feb 20.

Caldeira's computer models have predicted that the oceans will become far more acidic within the next century. Now, he has compared this data with ocean chemistry evidence from the fossil record, and has found some startling similarities. The new finding offers a glimpse of what the future might hold for ocean life if society does not drastically curb carbon dioxide emissions.

"The geologic record tells us the chemical effects of ocean acidification would last tens of thousands of years," Caldeira said. "But biological recovery could take millions of years. Ocean acidification has the potential to cause extinction of many marine species."

When carbon dioxide from the burning of coal, oil, and gas dissolves in the ocean, some of it becomes carbonic acid. Over time, accumulation of this carbonic acid makes ocean water more acidic. When carbonic acid input is modest, sediments from the ocean floor can buffer the increases in acidity. But at the current rate of input--nearly 50 times the natural background from volcanoes and other sources--this buffering mechanism is overwhelmed. Previous estimates suggest that in less than 100 years, the pH of the oceans could drop by as much as half a unit from its natural value of 8.2 to about 7.7. (On the pH scale, lower numbers are more acidic and higher numbers are more basic.)

This drop in ocean pH would be especially damaging to marine animals such as corals that use calcium carbonate to make their shells. Under normal conditions the ocean is supersaturated with this mineral, making it easy for such creatures to grow. However, a more acidic ocean would more easily dissolve calcium carbonate, putting these species at particular risk.

The last time the oceans endured such a drastic change in chemistry was 65 million years ago, at about the same time the dinosaurs went extinct. Though researchers do not yet know exactly what caused this ancient acidification, it was directly related to the cataclysm that wiped out the giant beasts. The pattern of extinction in the ocean is consistent with ocean acidification--the fossil record reveals a precipitous drop in the number of species with calcium carbonate shells that live in the upper ocean--especially corals and plankton. During the same period, species with shells made from resistant silicate minerals were more likely to survive.

The world's oceans came close to an acidic catastrophe one other time about 55 million years ago, when the temperature of the Earth spiked and large amounts of methane and/or carbon dioxide flooded the atmosphere. There is no evidence, however, that this caused a mass extinction event.

"Ultimately, if we are not careful, our energy system could make the oceans corrosive to coral reefs and many other marine organisms," Caldeira cautions. "These results should help motivate the search for new energy sources, such as wind and solar, that can fuel economic growth without releasing dangerous carbon dioxide into the environment."
-end-


Carnegie Institution for Science

Related Ocean Acidification Articles from Brightsurf:

For red abalone, resisting ocean acidification starts with mom
Red abalone mothers from California's North Coast give their offspring an energy boost when they're born that helps them better withstand ocean acidification compared to their captive, farmed counterparts, according to a study from the Bodega Marine Laboratory at the University of California, Davis.

Ocean warming and acidification effects on calcareous phytoplankton communities
A new study led by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) warns that the negative effects of rapid ocean warming on planktonic communities will be exacerbated by ocean acidification.

Sentinels of ocean acidification impacts survived Earth's last mass extinction
Two groups of tiny, delicate marine organisms, sea butterflies and sea angels, were found to be surprisingly resilient--having survived dramatic global climate change and Earth's most recent mass extinction event 66 million years ago, according to research published this week in the Proceedings of the National Academy of Sciences.

Great Barrier Reef 'glue' at risk from ocean acidification
Scientists have suspected that increasing ocean acidity would weaken and thin the structures underpinning tropical reefs.

Ocean acidification causing coral 'osteoporosis' on iconic reefs
Scientists have long suspected that ocean acidification is affecting corals' ability to build their skeletons, but it has been challenging to isolate its effect from that of simultaneous warming ocean temperatures, which also influence coral growth.

Arctic Ocean acidification worse than previously expected
Arctic Ocean acidification worse than previously expected.

Protecting bays from ocean acidification
As oceans absorb more man-made carbon dioxide from the air, a process of ocean acidification occurs that can have a negative impact on marine life.

Ocean acidification prediction now possible years in advance
CU Boulder researchers have developed a method that could enable scientists to accurately forecast ocean acidity up to five years in advance.

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.

Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.

Read More: Ocean Acidification News and Ocean Acidification Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.