UCLA scientists find male gene in brain area targeted by Parkinson's

February 20, 2006

UCLA scientists have discovered that a sex gene responsible for making embryos male and forming the testes is also produced by the brain region targeted by Parkinson's disease. Published in the Feb. 21 edition of Current Biology, the new research may explain why more men than women develop the degenerative disorder, which afflicts roughly 1 million Americans.

"Men are 1.5 times more likely to develop Parkinson's disease than women," said Dr. Eric Vilain, associate professor of human genetics at the David Geffen School of Medicine at UCLA. "Our findings may offer new clues to how the disorder affects men and women differently, and shed light on why men are more susceptible to the disease."

In 1990, British researchers identified SRY as the gene that determines gender and makes embryos male. Located on the male sex chromosome, SRY manufactures a protein that is secreted by cells in the testes.

Now, in an unexpected discovery, Vilain's team became the first to trace the SRY protein to a region of the brain called the substantia nigra, which deteriorates in Parkinson's disease.

Parkinson's disease occurs when cells in the substantia nigra begin to malfunction and die. These brain cells produce a neurotransmitter called dopamine that communicates with the brain areas controlling movement and coordination.

As the cells die off, they produce less dopamine. This slows the delivery of messages from the brain to the rest of the body, leaving the person unable to initiate or control their physical movements. The condition eventually leads to paralysis.

"For the first time, we've discovered that the brain cells that produce dopamine depend upon a sex-specific gene to function properly," Vilain said. "We've also shown that SRY plays a central role not just in the male genitals, but also in regulating the brain."

Vilain's lab used a rat model to study the effect of SRY on the brain. When the researchers lowered the level of SRY in the substantia nigra, they saw a corresponding drop in an enzyme called tyrosine hydroxylase (TH), which plays a key role in the brain's production of dopamine.

In a surprise finding, the drop in TH occurred only in the male rats. The female rats remained unaffected.

"When we reduced SRY levels in the rats' brains, the male animals began experiencing the movement problems caused by insufficient dopamine," Vilain said. "Low levels of SRY triggered Parkinson's symptoms in the male rats, cutting their physical agility by half in a week.

"Initially, the rat could walk 14 steps in 10 seconds," he noted. "After we lowered the SRY levels in its brain, the rat could only manage seven steps in the same amount of time."

Vilain believes that variations in SRY levels may be linked to the onset of Parkinson's and could offer insights into who is at risk for the disease.

"SRY may serve as a protective agent against Parkinson's," he said. "Men who contract the disease may have lower levels of the gene in the brain."

Because SRY is found only in males, Vilain thinks women must possess another physiological mechanism that protects dopamine-producing cells in the substantia nigra.

"We suspect that estrogens in women could play the same role as SRY in protecting the female brain from Parkinson's disease," he said. "Our lab is currently studying this hypothesis in an animal model."

Sex differences in other dopamine-linked disorders, such as schizophrenia or addiction, may also be explained by the SRY gene, Vilain said.

"It's possible that dopamine-related disorders that reveal dramatic differences in severity and rates in the genders could depend on the SRY levels in the brain," he said.
-end-
The study was co-authored by Marie-Francoise Chesselet, UCLA chair of neurobiology; and Paul Micevych, UCLA professor of neurobiology; and Vincent Harley, associate professor of human molecular genetics at Prince Henry's Institute of Medical Research, Australia.

The National Institute of Child Health and Human Development and the American Parkinson's Disease Association supported the research.

Parkinson's disease is a chronic movement disorder that worsens over time. While 15 percent of people with Parkinson's are diagnosed before age 40, prevalence increases with age. The cause of Parkinson's is unknown, and there is no cure. However, medication and surgery can help manage the symptoms.

University of California - Los Angeles

Related Dopamine Articles from Brightsurf:

Dopamine surge reveals how even for mice, 'there's no place like home'
''There's no place like home,'' has its roots deep in the brain.

New dopamine sensors could help unlock the mysteries of brain chemistry
In 2018, Tian Lab at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor.

Highly sensitive dopamine detector uses 2D materials
A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Viewing dopamine receptors in their native habitat
A new study led by UT Southwestern researchers reveals the structure of the active form of one type of dopamine receptor, known as D2, embedded in a phospholipid membrane.

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.

Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.

Read More: Dopamine News and Dopamine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.