Forest model predicts canopy competition

February 20, 2014

PROVIDENCE, R.I. [Brown University] -- Out of an effort to account for what seemed in airborne images to be unusually large tree growth in a Hawaiian forest, scientists at Brown University and the Carnegie Institution for Science have developed a new mathematical model that predicts how trees compete for space in the canopy.

What their model revealed for this particular forest of hardy native Metrosideros polymorpha trees on the windward slope of Manua Kea, is that an incumbent tree limb greening up a given square meter would still dominate its position two years later a forbidding 97.9 percent of the time. The model described online in the journal Ecology Letters could help generate similar predictions for other forests, too.

Why track forest growth using remote sensing, pixel by pixel? Some ecologists could use that information to learn how much one species is displacing another over a wide area or how quickly gaps in the canopy are filled in. Others could see how well a forest is growing overall. Tracking the height of a forest's canopy reveals how tall the trees are and therefore how much carbon they are keeping out of the atmosphere -- that is, as long as scientists know how to interpret the measurements of forest growth.

James Kellner, assistant professor of ecology and evolutionary biology at Brown University, the paper's lead and corresponding author, noticed what seemed like implausibly large canopy growth in LIDAR images collected by the Carnegie Airborne Observatory over 43 hectares on the windward flank of Manua Kea. In the vast majority of pixels (each representing about a square meter) the forest growth looked normal, but in some places the height change between 2007 and 2009 seemed impossible: sometimes 10 or 15 meters.

The data were correct, he soon confirmed, but the jumps in height signaled something other than vertical growth. They signaled places where one tree had managed to overtop another or where the canopy was filling in a bare spot. The forest wasn't storing that much more carbon; taller trees were growing a few meters to the side and creating exaggerated appearances of vertical growth in the overhead images.

Turning that realization into a predictive mathematical model is not a simple matter. Working with co-author Gregory P. Asner at the Carnegie Institution for Science in Stanford, Calif., Kellner created the model, which provides a probabilistic accounting of whether the height change in a pixel is likely to be the normal growth of the incumbent tree, a takeover by a neighboring tree, or another branch of the incumbent tree.

Tracking treetops

The model doesn't just work for this forest but potentially for different kinds of forests, Kellner said, because its interpretation of the data is guided by the data itself. The model uses what seems to be the forest's normal rate of growth to determine when evidence of vertical growth is more than plausible -- and therefore a possible signal of lateral overtopping.

"While we can all agree that a 20-meter increase over two years is definitely not vertical growth, where you put the boundary, is a necessarily subjective decision," Kellner said. "The neat thing about the analytical framework is you have the data choosing for you. The data arbitrate when a given height change is judged to be vertical rather than lateral, and that is based on the unique neighborhood around that position and what we've observed in the rest of the data."

So even in an area where growth is quite uniform, the model can still predict whether a height change is due to growth or a takeover. Accounting for several neighborhoods, including some with more variance, can delineate trends such as how close trees have to be before one could overtop another.

Using the model, Kellner and Asner gained a number of insights beyond the huge incumbency advantage. They found that a tree's height was a poor predictor of whether it would evade rivals. Very short trees (less than 11 meters) were clearly in some trouble, but beyond 11 meters tallness was not much of a factor. Instead, they saw, proximity to taller neighbors was a tree's biggest threat.

"When a position in the canopy was lost to a neighbor, it was almost exclusively due to competition among the immediate neighbors (the 3-by-3 pixel neighborhood), which represented locations that were less than 1.77 meters away," Kellner and Asner wrote. "Neighbors at greater distances accounted for just two of the 3,906 episodes of lateral capture inferred to have occurred in our data."

But in a forest with trees capable of more dramatic lateral growth, that distance might end up being bigger. The model would illuminate that.

"There's definitely basic ecological interest in understanding what might be called the rules of the game," Kellner said. "If you think of the trees as competing for access to space in the canopy and we can infer what those rules are by analyzing data like these."
The National Science Foundation (DEB-0715674) and the Carnegie Institution for Science funded the study.

Brown University

Related Mathematical Model Articles from Brightsurf:

A mathematical model facilitates inventory management in the food supply chain
A research study in the Diverfarming project integrates transport resources and inventory management in a model that seeks economic efficiency and to avoid shortages

Mathematical modelling to prevent fistulas
It is better to invest in measures that make it easier for women to visit a doctor during pregnancy than measures to repair birth injuries.

Predicting heat death in species more reliable with new mathematical model
An international research with the involvement of the Universitat Autònoma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks
Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Moffitt mathematical model predicts patient outcomes to adaptive therapy
In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics
As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes
MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution
Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes
Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.

Read More: Mathematical Model News and Mathematical Model Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to