Researchers say distant quasars could close a loophole in quantum mechanics

February 20, 2014

In a paper published this week in the journal Physical Review Letters, MIT researchers propose an experiment that may close the last major loophole of Bell's inequality -- a 50-year-old theorem that, if violated by experiments, would mean that our universe is based not on the textbook laws of classical physics, but on the less-tangible probabilities of quantum mechanics.

Such a quantum view would allow for seemingly counterintuitive phenomena such as entanglement, in which the measurement of one particle instantly affects another, even if those entangled particles are at opposite ends of the universe. Among other things, entanglement -- a quantum feature Albert Einstein skeptically referred to as "spooky action at a distance"-- seems to suggest that entangled particles can affect each other instantly, faster than the speed of light.

In 1964, physicist John Bell took on this seeming disparity between classical physics and quantum mechanics, stating that if the universe is based on classical physics, the measurement of one entangled particle should not affect the measurement of the other -- a theory, known as locality, in which there is a limit to how correlated two particles can be. Bell devised a mathematical formula for locality, and presented scenarios that violated this formula, instead following predictions of quantum mechanics.

Since then, physicists have tested Bell's theorem by measuring the properties of entangled quantum particles in the laboratory. Essentially all of these experiments have shown that such particles are correlated more strongly than would be expected under the laws of classical physics -- findings that support quantum mechanics.

However, scientists have also identified several major loopholes in Bell's theorem. These suggest that while the outcomes of such experiments may appear to support the predictions of quantum mechanics, they may actually reflect unknown "hidden variables" that give the illusion of a quantum outcome, but can still be explained in classical terms.

Though two major loopholes have since been closed, a third remains; physicists refer to it as "setting independence," or more provocatively, "free will." This loophole proposes that a particle detector's settings may "conspire" with events in the shared causal past of the detectors themselves to determine which properties of the particle to measure -- a scenario that, however far-fetched, implies that a physicist running the experiment does not have complete free will in choosing each detector's setting. Such a scenario would result in biased measurements, suggesting that two particles are correlated more than they actually are, and giving more weight to quantum mechanics than classical physics.

"It sounds creepy, but people realized that's a logical possibility that hasn't been closed yet," says MIT's David Kaiser, the Germeshausen Professor of the History of Science and senior lecturer in the Department of Physics. "Before we make the leap to say the equations of quantum theory tell us the world is inescapably crazy and bizarre, have we closed every conceivable logical loophole, even if they may not seem plausible in the world we know today?"

Now Kaiser, along with MIT postdoc Andrew Friedman and Jason Gallicchio of the University of Chicago, have proposed an experiment to close this third loophole by determining a particle detector's settings using some of the oldest light in the universe: distant quasars, or galactic nuclei, which formed billions of years ago.

The idea, essentially, is that if two quasars on opposite sides of the sky are sufficiently distant from each other, they would have been out of causal contact since the Big Bang some 14 billion years ago, with no possible means of any third party communicating with both of them since the beginning of the universe -- an ideal scenario for determining each particle detector's settings.

As Kaiser explains it, an experiment would go something like this: A laboratory setup would consist of a particle generator, such as a radioactive atom that spits out pairs of entangled particles. One detector measures a property of particle A, while another detector does the same for particle B. A split second after the particles are generated, but just before the detectors are set, scientists would use telescopic observations of distant quasars to determine which properties each detector will measure of a respective particle. In other words, quasar A determines the settings to detect particle A, and quasar B sets the detector for particle B.

The researchers reason that since each detector's setting is determined by sources that have had no communication or shared history since the beginning of the universe, it would be virtually impossible for these detectors to "conspire" with anything in their shared past to give a biased measurement; the experimental setup could therefore close the "free will" loophole. If, after multiple measurements with this experimental setup, scientists found that the measurements of the particles were correlated more than predicted by the laws of classical physics, Kaiser says, then the universe as we see it must be based instead on quantum mechanics.

"I think it's fair to say this [loophole] is the final frontier, logically speaking, that stands between this enormously impressive accumulated experimental evidence and the interpretation of that evidence saying the world is governed by quantum mechanics," Kaiser says.

Now that the researchers have put forth an experimental approach, they hope that others will perform actual experiments, using observations of distant quasars.

"At first, we didn't know if our setup would require constellations of futuristic space satellites, or 1,000-meter telescopes on the dark side of the moon," Friedman says. "So we were naturally delighted when we discovered, much to our surprise, that our experiment was both feasible in the real world with present technology, and interesting enough to our experimentalist collaborators who actually want to make it happen in the next few years."

Adds Kaiser, "We've said, 'Let's go for broke -- let's use the history of the cosmos since the Big Bang, darn it.' And it is very exciting that it's actually feasible."
-end-
This research was funded by the National Science Foundation.

Written by Jennifer Chu, MIT News Office

Massachusetts Institute of Technology

Related Quantum Mechanics Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

A new interpretation of quantum mechanics suggests reality does not depend on the measurer
For 100 years scientists have disagreed on how to interpret quantum mechanics.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Fluid mechanics mystery solved
An environmental engineering professor has solved a decades-old mystery regarding the behavior of fluids, a field of study with widespread medical, industrial and environmental applications.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.

Read More: Quantum Mechanics News and Quantum Mechanics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.