NASA researcher finds planet-sized space weather explosions at Venus

February 20, 2014

Researchers recently discovered that a common space weather phenomenon on the outskirts of Earth's magnetic bubble, the magnetosphere, has much larger repercussions for Venus. The giant explosions, called hot flow anomalies, can be so large at Venus that they're bigger than the entire planet and they can happen multiple times a day.

"Not only are they gigantic," said Glyn Collinson, a space scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "But as Venus doesn't have a magnetic field to protect itself, the hot flow anomalies happen right on top of the planet. They could swallow the planet whole."

Collinson is the first author of a paper on these results that appeared online in the Journal of Geophysical Research in February 2014. The work is based on observations from the European Space Agency's Venus Express. The results show just how large and how frequent this kind of space weather is at Venus.

Earth is protected from the constant streaming solar wind of radiation by its magnetosphere. Venus, however, has no such luck. A barren, inhospitable planet, with an atmosphere so dense that spacecraft landing there are crushed within hours, Venus has no magnetic protection.

Scientists like to compare the two: What happened differently at Earth to make it into the life-supporting planet it is today? What would Earth be like without its magnetic field?

At Earth, hot flow anomalies do not make it inside the magnetosphere, but they release so much energy just outside that the solar wind is deflected, and can be forced to move back toward the sun. Without a magnetosphere, what happens at Venus is very different.

Venus's only protection from the solar wind is the charged outer layer of its atmosphere called the ionosphere. A sensitive pressure balance exists between the ionosphere and the solar wind, a balance easily disrupted by the giant energy rush of a hot flow anomaly. The hot flow anomalies may create dramatic, planet-scale disruptions, possibly sucking the ionosphere up and away from the surface of the planet.
-end-


NASA/Goddard Space Flight Center

Related Solar Wind Articles from Brightsurf:

Wind beneath their wings: Albatrosses fine-tuned to wind conditions
A new study of albatrosses has found that wind plays a bigger role in their decision to take flight than previously thought, and due to their differences in body size, males and females differ in their response to wind.

New research deepens understanding of Earth's interaction with the solar wind
A team of scientists at PPPL and Princeton University has reproduced a process that occurs in space to deepen understanding of what happens when the Earth encounters the solar wind.

Hydropower plants to support solar and wind energy in West Africa
Study maps smart electricity mix composed of solar, wind and hydropower for West Africa -- regional cooperation can provide up to 60% reliable and clean electricity

Solar and wind energy sites mapped globally for the first time
Researchers at the University of Southampton have mapped the global locations of major renewable energy sites, providing a valuable resource to help assess their potential environmental impact.

New research helps explain why the solar wind is hotter than expected
When the sun expels plasma, the solar wind cools as it expands through space -- but not as much as the laws of physics would predict.

Solar wind samples suggest new physics of massive solar ejections
A new study led by the University of Hawai'i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar 'wind,' a stream of ionized atoms ejected from the Sun.

Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.

Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.

Closest-ever approach to the sun gives new insights into the solar wind
The Parker Solar Probe spacecraft, which has flown closer to the sun than any mission before, has found new evidence of the origins of the solar wind.

SwRI-built instrument confirms solar wind slows farther away from the Sun
Measurements taken by the Solar Wind Around Pluto (SWAP) instrument aboard NASA's New Horizons spacecraft are providing important new insights from some of the farthest reaches of space ever explored.

Read More: Solar Wind News and Solar Wind Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.