Nav: Home

Molecular biology: Fingerprinting cell identities

February 20, 2017

Every cell has its own individual molecular fingerprint, which is informative for its functions and regulatory states. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have now carried out a comprehensive comparison of methodologies that quantify RNAs of single cells.

The cell is the fundamental unit of all living organisms. Hence, in order to understand essential biological processes and the perturbations that give rise to disease, one must first dissect the functions of cells and the mechanisms that regulate them. Modern high-throughput protein and nucleic-acid sequencing techniques have become an indispensable component of this endeavor. In particular, single-cell RNA sequencing (scRNA-seq) permits one to determine the levels of RNA molecules - the gene copies - that are expressed in a given cell, and several versions of the methodology have been described in recent years. The spectrum of genes expressed in a given cell amounts to a molecular fingerprint, which yields a detailed picture of its current functional state. "For this reason, the technology has become an extraordinarily valuable tool, not only for basic research but also for the development of new approaches to treat diseases," says LMU biologist Wolfgang Enard. Enard and his team have now undertaken the first comprehensive comparative analysis of the various RNA sequencing techniques, with regard to their sensitivity, precision and cost efficiency. Their results appear in the leading journal Molecular Cell.

The purpose of scRNA-seq is to identify the relative amounts of the messenger RNA (mRNA) molecules present in the cells of interest. mRNAs are the blueprints that specify the structures of all the proteins made in the cell, and represent "transcribed" copies of the corresponding genetic information encoded in specific segments of the genomic DNA in the cell nucleus. In the cytoplasm surrounding the nucleus, the nucleotide sequences of mRNAs are "translated" into the amino-acid sequences of proteins by molecular machines called ribosomes. Thus a complete catalog of the mRNAs in a cell provides a comprehensive view of the proteins that it produces, and tells one what subset of the thousands of genes in the genome are active and how their activity is regulated. Furthermore, aberrant patterns of gene activity point to disturbances in gene expression and cell function, and reveal the presence of specific pathologies. The scRNA-seq procedure itself can be carried out using commercially available kits, but many researchers prefer to assemble the components required for their preferred formulations themselves.

In order to ascertain which of the methods currently in use is most effective and economical, Enard and his colleagues applied six different methods to mouse embryonal stem cells and compared the spectra of mRNAs detected by each of them. They then used this data to compute how much it costs for each method to reliably detect differently expressed genes between two cell types. "This comparison revealed that some of the commercial kits are ten times more expensive than the corresponding home-made versions," Enard says. However, the researchers point out that the choice of the optimal method largely depends on the conditions and demands of the individual experiment. "It does make a difference whether one wants to analyze the activity of hundreds of genes in thousands of individual cells, or thousands of genes in hundreds of cells," Enard says. "We were able to demonstrate which method is best for a given purpose, and we also obtained data that will be useful for the further development of the technology."

The new findings are of particular interest in the field of genomics. For example, scRNA-seq is a fundamental prerequisite for the success of the effort to assemble a Human Cell Atlas - one of the most ambitious international projects in genomics since the initial sequencing of the human genome. It aims to provide no less than a complete inventory of all the cell types and subtypes in the human body at all stages of development from embryo to adult on the basis of their patterns of gene activity. It is estimated that the total number of cells in the human body is on the order of 3.5 × 1013. Scientists expect that such an atlas would revolutionize our knowledge of human biology and our understanding of disease processes.

Ludwig-Maximilians-Universität München

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".