New hydronium-ion battery presents opportunity for more sustainable energy storage

February 20, 2017

CORVALLIS, Ore. - A new type of battery developed by scientists at Oregon State University shows promise for sustainable, high-power energy storage.

It's the world's first battery to use only hydronium ions as the charge carrier.

The new battery provides an additional option for researchers, particularly in the area of stationary storage.

Stationary storage refers to batteries in a permanent location that store grid power - including power generated from alternative energy sources such as wind turbines or solar cells - for use on a standby or emergency basis.

Hydronium, also known as H3O+, is a positively charged ion produced when a proton is added to a water molecule. Researchers in the OSU College of Science have demonstrated that hydronium ions can be reversibly stored in an electrode material consisting of perylenetetracarboxylic dianhydridem, or PTCDA.

This material is an organic, crystalline, molecular solid. The battery, created in the Department of Chemistry at Oregon State, uses dilute sulfuric acid as the electrolyte.

Graduate student Xingfeng Wang was the first author on the study, which has been published in the journal Angewandte Chemie International Edition, a publication of the German Chemical Society.

"This may provide a paradigm-shifting opportunity for more sustainable batteries," said Xiulei Ji, assistant professor of chemistry at OSU and the corresponding author on the research. "It doesn't use lithium or sodium or potassium to carry the charge, and just uses acid as the electrolyte. There's a huge natural abundance of acid so it's highly renewable and sustainable."

Ji points out that until now, cations - ions with a positive charge - that have been used in batteries have been alkali metal, alkaline earth metals or aluminum.

"No nonmetal cations were being considered seriously for batteries," he said.

The study observed a big dilation of the PTCDA lattice structure during intercalation - the process of its receiving ions between the layers of its structure. That meant the electrode was being charged, and the PTCDA structure expanded, by hydronium ions, rather than extremely tiny protons, which are already used in some batteries.

"Organic solids are not typically contemplated as crystalline electrode materials, but many are very crystalline, arranged in a very ordered structure," Ji said. "This PTCDA material has a lot of internal space between its molecule constituents so it provides an opportunity for storing big ions and good capacity."

The hydronium ions also migrate through the electrode structure with comparatively low "friction," which translates to high power.

"It's not going to power electric cars," Ji said. "But it does provide an opportunity for battery researchers to go in a new direction as they look for new alternatives for energy storage, particularly for stationary grid storage."
-end-


Oregon State University

Related Energy Storage Articles from Brightsurf:

Reviewing multiferroics for future, low-energy data storage
Big data and exponential demands for computations are driving an unsustainable rise in global ICT energy use.

The perfect angle for e-skin energy storage
Researchers at DGIST have found an inexpensive way to fabricate tiny energy storage devices that can effectively power flexible and wearable skin sensors along with other electronic devices, paving the way towards remote medical monitoring & diagnoses and wearable devices.

Upcycling plastic waste toward sustainable energy storage
UC Riverside engineering professors Mihri and Cengiz Ozkan and their students have been working for years on creating improved energy storage materials from sustainable sources, such as glass bottles, beach sand, Silly Putty, and portabella mushrooms.

Chemists advance solar energy storage aimed at global challenges
Multi-university effort develops solar energy storage to enable decentralized electrification systems in remote areas.

Energy-saving servers: Data storage 2.0
A research team of Mainz University has developed a technique that will potentially halve the energy required to write data to servers and make it easier to construct complex server architectures.

Energy storage using oxygen to boost battery performance
Researchers have presented a novel electrode material for advanced energy storage device that is directly charged with oxygen from the air.

New material, modeling methods promise advances in energy storage
The explosion of mobile electronic devices, electric vehicles, drones and other technologies have driven demand for new lightweight materials that can provide the power to operate them.

Finding balance between green energy storage, harvesting
Generating power through wind or solar energy is dependent on the abundance of the right weather conditions, making finding the optimal strategy for storage crucial to the future of sustainable energy usage.

Diamonds shine in energy storage solution
QUT researchers have proposed the design of a new carbon nanostructure made from diamond nanothreads that could one day be used for mechanical energy storage, wearable technologies, and biomedical applications.

Gas storage method could help next-generation clean energy vehicles
A Northwestern University research team has designed and synthesized new materials with ultrahigh porosity and surface area for the storage of hydrogen and methane for fuel cell-powered vehicles.

Read More: Energy Storage News and Energy Storage Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.