Nav: Home

Volcano Samalas mystery revealed

February 20, 2017

The reason for the scientific interest in the eruption of the volcano Samalas is that it is considered the largest in the last thousand years throwing as much as 10 cubic miles of rock into the atmosphere, which lead to destroying Pamatan, the capital of the ancient Kingdom of Lombok. The ice cores in Greenland evidence this as the study of their chemical composition in the 1980s pointed out that there was one of the largest in history volcanic eruptions in the XIII century. The volcano itself has long remained unknown, and scientists have searched for it all over the world. After studying the writings on the palm leaves in Old Javanese, in 2003 Franck Lavigne found that this volcano could be Samalas located on the island of Lombok in Indonesia. Lake Segara Anak formed in the crater later and made it difficult to detect the volcano.

One of the existing scientific theories in climatology over the impact of the eruption Samalas volcano on global climatic conditions in the XIII century says that this event may be the cause of the abnormal cold weather (chronicles describe the following year as the "year without a summer"), widespread crop failure, famine, and social upheavals in Europe after 1257.

In January 2017 a paper under the title "Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records" was published in the British scientific journal Nature Geoscience with high impact factor among the nature journals (12.508 for 2 years). The international writing team includes scientists from Switzerland, Russia, France, Britain, the United States, China and Canada. Vladimir Myglan (School of the Humanities of Siberian Federal University) and Olga Churakova (Sidorova) (University of Bern, Institute of Geological Sciences, V.N. Sukachev Institute of Forest, SB RAS) are the Krasnoyarsk scientists who took part in the research. In the scientific world, the leading hypothesis is that the eruption of the volcano Samalas in 1257 was the cause of the Little Ice Age, and more than a hundred years of social crisis in Europe. Based on the analysis of reliable sources the paper refutes this hypothesis.

The international team of scientists base their studies on the chronicles of European cities (Speyer, Worms and others) and Siberia, chronicles of harvests and climate data of the annual rings of trees. During the interdisciplinary analysis of data sources, it was found that the impact of the volcanic eruption Samalas on the European climate and the severe cooling after 1257 is greatly exaggerated as the heterogeneity of climate change occurs in the places of distribution of volcanic sediments.

Vladimir Myglan: "Western Europe, Siberia and Japan experienced the strongest cooling, which coincided with warmer than normal conditions in Alaska and Northern Canada. It is assumed that in North America volcanic radiation was modeled on the positive vibrations of the warm phase of the El Niño. Historical data confirm a severe famine in England and Japan, but it had started before the eruption. We believe that the eruption of the volcano Samalas only aggravated an existing crisis but it was not the cause".
-end-


Siberian Federal University

Related Ice Age Articles:

Paintings, sunspots and frost fairs: Rethinking the Little Ice Age
The whole concept of the 'Little Ice Age' is 'misleading,' as the changes were small-scale, seasonal and insignificant compared with present-day global warming, a group of solar and climate scientists argue.
Ice age thermostat prevented extreme climate cooling
During the ice ages, an unidentified regulatory mechanism prevented atmospheric CO2 concentrations from falling below a level that could have led to runaway cooling, reports a study conducted by researchers of the ICTA-Universitat Autònoma de Barcelona and published online in Nature Geoscience this week.
Simple rule predicts when an ice age ends
A simple rule can accurately predict when Earth's climate warms out of an ice age, according to new research led by UCL.
How an Ice Age paradox could inform sea level rise predictions
New findings from the University of Michigan explain an Ice Age paradox and add to the mounting evidence that climate change could bring higher seas than most models predict.
Inception of the last ice age
A new model reconstruction shows in exceptional detail the evolution of the Eurasian ice sheet during the last ice age.
Ice age vertebrates had mixed responses to climate change
New research examines how vertebrate species in the eastern United States ranging from snakes to mammals to birds responded to climate change over the last 500,000 years.
Why does our planet experience an ice age every 100,000 years?
Experts from Cardiff University have offered up an explanation as to why our planet began to move in and out of ice ages every 100,000 years.
Siberian larch forests are still linked to the ice age
The Siberian permafrost regions include those areas of the Earth, which heat up very quickly in the course of climate change.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
New ice age knowledge
An international team of researchers headed by scientists from the Alfred Wegener Institute has gained new insights into the carbon dioxide exchange between ocean and atmosphere, thus making a significant contribution to solving one of the great scientific mysteries of the ice ages.

Related Ice Age Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".