Stable gas hydrates can trigger landslides

February 20, 2018

In the mid-1990s, German scientists, among others, were able to prove that the continental slopes at ocean margins contain large amounts of gas hydrates. These solid, ice-like compounds of water and gas are often considered a kind of cement, which stabilizes the slopes. Since gas hydrates are only stable at high pressure and low temperature, rising water temperatures can cause gas hydrates to dissociate, or 'melt', in simple terms. It has been suggested previously that large-scale gas hydrate dissociation could cause submarine landslides that could in turn trigger tsunamis. The fact that many fossil landslides correlate spatially with sediments containing gas hydrates seems to strengthen this argument.

Now, researchers from GEOMAR Helmholtz Centre for Ocean Research Kiel, together with colleagues from Kiel University and the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, have found evidence that gas hydrates and submarine landslides are indeed linked--but in a quite different way than previously thought. "Our data show that stable gas hydrates can indirectly destabilize the sediment above," says Dr. Judith Elger from GEOMAR. She is the lead author of the study, which has been published in the international journal Nature Communications.

An inconsistency in the previous theory, which focused on melting gas hydrates as the cause of submarine landslides, was the starting point of the new research. "The water depths did not match. With rising water temperatures or decreasing sea levels, gas hydrate melting would be initiated around the upper parts of continental slopes. However, most known fossil submarine landslides were triggered in greater depths," explains Dr. Elger.

To resolve this contradiction, the geophysicist examined seismic data from the area of the Hinlopen Slide, which occurred about 30,000 years ago north of Svalbard in 750 to 2,200 meters water depth. The team used the seismic data to simulate new processes with a computer model.

It turned out that gas hydrates can form a solid, impermeable layer beneath the seafloor. Free gas and other fluids can accumulate below this layer. Over time they create overpressure. Eventually, gas hydrates and sediments no longer withstand this elevated pore pressure and hydro fractures form in the sediments. These fractures form conduits that transfer overpressure to shallower coarse-grained sediments and thereby trigger shallow slope failure. In the case of the Hinlopen Slide, these fluid conduits are still visible in the seismic data.

"We were able to show that this process is a realistic alternative to other triggering processes for the Hinlopen Slide, and it is completely independent of climatic changes. However, important information about the properties of gas hydrate-bearing sediments is still lacking to improve our models," says Dr. Elger.

In any case, the study shows a new causal process that has not been considered so far in the search for causes of submarine landslides. "Further studies that combine seismic data and geotechnical laboratory experiments must now show whether similar fractures can be detected beneath the seafloor on other historical landslides and whether this is a common phenomenon,§ Dr. Elger concludes.
-end-


Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Seafloor Articles from Brightsurf:

Microbial diversity below seafloor is as rich as on Earth's surface
For the first time, researchers have mapped the biological diversity of marine sediment, one of Earth's largest global biomes.

Deep-seabed mining lastingly disrupts the seafloor food web
Deep-seabed mining is considered a way to address the increasing need of rare metals.

How the seafloor of the Antarctic Ocean is changing - and the climate is following suit
Experts have reconstructed the depth of the Southern Ocean at key phases in the last 34 million years of the Antarctic's climate history

Coastal cities leave up to 75% of seafloor exposed to harmful light pollution
New research is the first in the world to quantify the extent to which biologically important artificial light is prevalent on the seafloor and could, in turn, be having a detrimental effect on marine species.

Marine microorganisms: How to survive below the seafloor
Foraminifera, an ancient and ecologically highly successful group of marine organisms, are found on and below the seafloor.

Four new species of giant single-celled organisms discovered on Pacific seafloor
Two new genera and four new species of giant, single-celled xenophyophores (protozoans belonging to a group called the foraminifera) were discovered in the deep Pacific Ocean during a joint project between scientists at the National Oceanography Centre, UK; the University of Hawai'i and the University of Geneva.

Delicate seafloor ridges reveal the rapid retreat of past Antarctic ice
Detailed seafloor mapping of submerged glacial landforms finds that Antarctic ice sheets in the past retreated far faster than the most rapid pace of retreat observed today, exceeding even the most extreme modern rates by at least an order of magnitude, according to a new study.

Window to another world: Life is bubbling up to seafloor with petroleum from deep below
Microbial life is bubbling up to the ocean floor along with fluids from deeply buried petroleum reservoirs, reports a team of scientists from the University of Calgary and the Marine Biological Laboratory, Woods Hole.

Scientists find highest ever level of microplastics on seafloor
An international research project has revealed the highest levels of microplastic ever recorded on the seafloor, with up to 1.9 million pieces in a thin layer covering just 1 square meter.

Seafloor currents may direct microplastics to biodiversity hotspots of the deep
Microplastic particles entering the sea surface were thought to settle to the seafloor directly below them, but now, a new study reveals that slow-moving currents near the bottom of the ocean direct the flow of plastics, creating microplastic hotpots in sediments of the deep sea.

Read More: Seafloor News and Seafloor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.