Nav: Home

Computer simulators show how to reduce damage to lungs of children in intensive care

February 20, 2019

  • Mechanical ventilation of children in intensive care units is often necessary, but can damage the lungs of critically ill patients
  • It's possible to change ventilator settings to reduce the risk of damage without putting child patients at risk, according to engineering researchers at the University of Warwick
  • They successfully tested their new treatment strategies on simulated patients using data from real patients collected at the Children's Hospital of Philadelphia, published in the journal Intensive Care Medicine
Changing the ventilation settings for children on life support can reduce the risk of damage to their lungs, researchers at the University of Warwick and the Children's Hospital of Philadelphia have found on computer simulated patients.

Paediatric Acute Respiratory Distress Syndrome (PARDS) is one of the most challenging diseases for doctors to manage in the pediatric intensive care unit, and can arise due to several different causes, such as pneumonia, sepsis, trauma, and drowning.

Mechanical ventilation is a life-saving medical intervention for many such patients, but the forces and stresses applied by the ventilator can themselves further damage the lungs (so-called ventilator induced lung injury - VILI).

Using patient data collected by Dr. Nadir Yehya, an attending physician in the paediatric intensive care unit at the Children's Hospital of Philadelphia, researchers form the Department of Engineering at the University of Warwick have developed a computer simulator that predicts how different ventilator settings affect the lungs of individual child patients in the ICU.

This simulator was then used to safely investigate whether, and how, ventilator settings can be changed to be more "protective", i.e. to lower the risk of causing VILI in different patients, while still maintaining adequate ventilation.

The researchers identified several strategies that, in simulated patients, led to significant reductions in variables that are associated with VILI, such as tidal volumes (the volume of air displaced between inhalation and exhalation) and driving pressures.

The next stage of this research will be to test these strategies in patients in formal prospective trials in order to evaluate the clinical benefits of more protective ventilation in real hospital environments.

Professor Declan Bates from the School of Engineering at the University of Warwick commented:

"It has been incredibly exciting to see the potential of computer simulators being realised to develop safer treatment strategies for critically ill children in the intensive care unit. We are sure that combining the expertise of medical doctors and engineers will bring about radical improvements in patient care and medical outcomes over the coming years."

Dr. Nadir Yehya from the Division of Critical Care Medicine at the Children's Hospital of Philadelphia commented:

"Collaborations such as these are essential for providing safe care for our sickest children. Computer simulations have been relatively under-utilised in paediatric intensive care, and we are excited about the opportunities to address critical areas of research using these technologies."
-end-
NOTES TO EDITORS

High-res images available at:
https://warwick.ac.uk/services/communications/medialibrary/images/february2019/declanbates.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/february2019/respiratory_therapist.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/february2019/yehya-nadir.jpg

For further information please contact:
Alice Scott
Media Relations Manager - Science, University of Warwick
Tel: +44 (0) 2476 574 255 or +44 (0) 7920 531 221
E-mail: alice.j.scott@warwick.ac.uk

University of Warwick

Related Engineering Articles:

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.