Nav: Home

Genetic blueprint for extraordinary wood-munching fungus

February 20, 2019

A relatively unknown fungus, accidentally found growing on an Acacia tree in the Northern Cape, has emerged as a voracious wood-munching organism with enormous potential in industries based on renewable resources.

The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.

Now C. pulveracea has had its whole genome sequenced by microbiologists at Stellenbosch University (SU) in South Africa, and henceforth made its debut in cyberspace with a few tweets and a hashtag. All because this relatively unknown fungus has an extraordinary ability to degrade wood - hence the descriptor "pulveracea", meaning powdery.

In the age of biotechnology, biofuels and the usage of renewable raw materials, this is an important fungus to take note of, says Prof Alf Botha, a microbiologist in the Department of Microbiology at SU.

Over the past 25 years, there has been a number of reports on the ability of species in the Coniochaeta genus to rapidly degrade lignocellulose into fermentable simple sugars. But thus far Prof Botha's lab is the only one to be working on C. pulveracea.

The work started in 2011, when he quite randomly snapped a brittle twig, covered in lichen, from a decaying Acacia tree. At the time, he was holidaying with family on a farm in the Northern Cape. "At the time we were looking for fungi and yeasts that can break down wood, so I knew this was something special when I decided to keep the twig," he explains. But to date, despite numerous attempts, they have not been able to find it again.

However, back in the lab there was great excitement when they observed that this species in the Coniochaeta genus was literally munching its way through birchwood toothpicks. Even more astounding was its ability to change form between a filamentous fungus and a yeast, depending on the environment.

"This is highly unusual for a fungus. We'd typically expect this kind of behavior from some fungal pathogens," explains Botha.

Over the past decade Botha and his postgraduate students focused on unraveling this yeast-like fungus' behavior. In 2011 Dr Andrea van Heerden found that it produced enzymes that degraded the complex structures of wood into simple sugars, feeding a community of surrounding fungi that do not have the ability to degrade wood. In 2016, she published the results of her investigation into its ability to switch to a yeast-like growth. Understanding this process would be important to the potential use of this fungi in industrial processes.

In the latest study, MSc student CJ Borstlap worked with Dr Heinrich Volschenk , an expert molecular biologist, and Dr Riaan de Witt from the Centre for Bioinformatics and Computational Biology at SU, to produce the first draft genome sequence of C. pulveracea. With a genome size of 30 million nucleotides and over 10 000 genes, this was no easy task. In the process he picked up the necessary coding skills to identify and name all 10 053 genes, and to identify those responsible for the wood-degrading character of the fungus.

Dr Volschenk says the next step is to understand the fungus' mechanism of breaking down wood and producing sugars on a molecular level: "With the genetic blueprint now available, we can study the network of genes and proteins the fungus employs to convert wood and other similar renewable resources into more valuable products," he explains.
-end-
The sequence data for C. pulveracea have been deposited at the DNA Data Bank of Japan (DDBJ), the European Nucleotide Archive (ENA) at Cambridge, and GenBank in the United States of America, under the accession number QVQW00000000 and is freely available to all researchers in this field.

Stellenbosch University

Related Fungus Articles:

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.
The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.
Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.
Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.
Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.
Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.
Deadly amphibian fungus has its origins in East Asia
The fungus kills frogs, toads and salamanders, and now we know where it emerged.
How wheat can root out the take-all fungus
In the soils of the world's cereal fields, a family tussle between related species of fungi is underway for control of the crops' roots, with food security on the line.
More Fungus News and Fungus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.