Nav: Home

New insight into river flows and sediment transport under ice cover

February 20, 2019

The ice-covered season plays an important role in the development of river channels, a new study from the University of Eastern Finland shows. The spatial variability of sediment transport and differences in depositional and erosional locations increase in ice-covered conditions. The greatest erosional forces are located in the shallow sections of the river in both open-channel and ice-covered conditions. However, ice cover narrowed the flow area. The findings were published in Earth Surface Processes and Landforms.

"In subarctic regions, the ice-covered flow season lasts up to eight months of the year, and this is something that should be taken into consideration when analysing sediment transport in rivers. Yet, this has very rarely been the case," says Dr Eliisa Lotsari from the University of Eastern Finland.

Researchers at the University of Eastern Finland and the University of Turku simulated the ice-covered flow in a meandering subarctic river, the Pulmanki River, in northern Finland. Using hydrodynamic 2D modelling, the researchers explored spatial variation in flow characteristics and the erosion and sedimentation potential of the ice-covered flow compared to open-channel conditions. Up until now, ice-covered flow and sediment transport conditions have mainly been studied in laboratory conditions. Moreover, previous studies have mainly focused on major floods or open-channel conditions.

"Future changes in seasonal temperatures and in rivers' ice conditions may have a significant impact on river morphology in colder climates, as there may be changes to river flows, sediment transport and river origins. These may also have long-term ecological consequences for rivers' vegetation and animal populations," Lotsari says.

The study found that ice cover influenced the occurrence of recirculating flow structures. It also increased the density of small recirculating flow structures. Low flow velocity in these "whirlpools" also enable sediment deposition. However, the critical thresholds for particle entrainment are exceeded more often in open-channel conditions than in ice-covered ones.
-end-
The study was funded by the Academy of Finland, Maj and Tor Nessling Foundation, and the British Society for Geomorphology.

For further information, please contact: Eliisa Lotsari, tel. +358 50 575 8297, eliisa.lotsari(at)uef.fi

Research article:

Eliisa Lotsari, Tiia Tarsa, Maria Kämäri, Petteri Aho, Elina Kasvi. Spatial variation of flow characteristics in a subarctic meandering river in ice-covered and open-channel conditions: A 2D hydrodynamic modelling approach. Earth Surface Processes and Landforms. 2019. https://doi.org/10.1002/esp.4589

University of Eastern Finland

Related Ice Articles:

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.
A close look at thin ice
Marrying theoretical work with experiments and high-tech imaging techniques, atmospheric chemists Chongqin Zhu and Joseph S.
Evidence: Antarctica's thinning ice shelves causing more ice to move from land into sea
New study provides the first evidence that thinning ice shelves around Antarctica are causing more ice to move from the land into the sea.
Why is ice so slippery
The answer lies in a film of water that is generated by friction, one that is far thinner than expected and much more viscous than usual water through its resemblance to the 'snow cones' of crushed ice we drink during the summer.
Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.
Chipping away at how ice forms could keep windshields, power lines ice-free
How does ice form? Surprisingly, science hasn't fully answered that question.
Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.
The making of 'warm ice'
The Center for Convergence Property Measurement, Frontier in Extreme Physics Team at Korea Research Institute of Standards and Science (KRISS) succeeded in creating room-temperature ice and controlling its growth behaviors by dynamically compressing water up to pressures above 10,000 atmospheres.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
New approach to easier ice removal
Reducing the toughness, rather than the strength, between ice and the surface it covers is key to developing highly icephobic materials, a new study reports.
More Ice News and Ice Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.