Nav: Home

Cold-temperature variability important in evaluating climate change

February 20, 2019

BINGHAMTON, NY - New research from Binghamton University, State University of New York, highlights the importance of considering cold temperature variability, and not just warming temperatures, when evaluating the impact of climate change.

A team of Binghamton University researchers including Jessica Hua, assistant professor of biological sciences, and George Meindl, assistant professor of environmental studies, investigated the effect of climate change on amphibian health and their susceptibility to contaminants and parasites. When it comes to climate change, public attention often focuses on the effect of rising average temperatures. In contrast, this study focused on the effect of cold and variable temperatures, which are also consequences of climate change. The researchers discovered that cold temperatures make amphibians more susceptible to road salt but less susceptible to parasites. These findings reveal the importance of considering cold-temperature variability, and not just warming temperatures, when evaluating the impacts of global climate disruption, said Hua.

"There is a lot of misconception that global climate change only refers to an increase in warming temperatures," Hua said. "We feel that the research in this paper is important because it highlights that global climate change is more complex than just an increase in average temperature. In fact, global climate change is also predicted to increase the prevalence of extreme cold temperature events, as well as increase the amount of variation in temperature fluctuations."

Lead author Matthew Wersebe from the University of Oklahoma agreed and said that many people overlook the impact of climate change on plants and animals.

"We all recognize that climate change [is] one of the most serious issues facing us today," said Wersebe. "However, as much as it is recognized as [a] serious concern for people, the impacts to animal and plant populations is much less front and center. Along with this, many studies only consider warming, or changing patterns of water availability on natural systems, and not the impact of the variability in the short-term that is also expected with climate change. Studies like these are critical to understanding the full impacts of climate change."

Due to the rising temperatures from climate change, organisms begin breeding earlier in the spring, which paradoxically leads to an increased risk that these organisms are exposed to heightened fluctuations in temperature during early development, including harmful cold-temperature regimes. It is important to note that while these cold temperatures may not always be deadly, they may alter the susceptibility of amphibians to other stressors, including contaminants and parasites. By placing wood frog embryos in various cold temperature regimes, researchers looked specifically at the consequences of exposure to these lower temperatures.

The research team discovered that amphibians exposed to constant cold conditions as embryos were more susceptible to road salt contamination, but were able to recover as they aged. This is particularly relevant as road salt use is predicted to increase during extreme cold temperature events. The team also found that amphibians exposed to cold temperatures as embryos were generally smaller as they aged, and developed slower, which ultimately made them less prone to parasites because their miniature size made them less attractive. However, these results were not anticipated.

"We initially predicted that exposure to cold temperatures would be stressful to developing embryos. As a consequence, we expected that exposure to stressful conditions early in life would make amphibians less able to deal with other stressors later in life (i.e. parasites)," Hua said. "We were also surprised because past studies have found that cooler temperatures can increase amphibian susceptibility to another parasite (the fungus, chytrid). In this case, the negative effects of the cooler temperatures on amphibians are driven by the fact that the fungus survived better in cooler temperatures."

Ultimately, the study concluded that variation in cold temperatures can lead to unique consequences on amphibian growth, development and responses to other stressors, such as contaminants and parasites. Whether the impact from the cold was harmful or helpful for the amphibians is difficult to gauge.

"In some cases, exposure to cold temperatures was harmful. For instance: exposure to cold temperatures during the egg phase made young tadpoles more susceptible to road salt," said Wersebe. "However, if we allowed these tadpoles to grow older, we found that exposure to cold temperatures during the egg stage no longer mattered for their susceptibility to road salt (i.e. older tadpoles were able to overcome the negative effect of embryonic exposure to cold). Exposure to cold also made amphibians smaller--this is potentially harmful to amphibian populations because smaller amphibians have fewer offspring and this can over time potentially contribute to populations declines. Amphibian populations are declining globally, so considering the effects of cold temperatures may be important in understanding how to protect this imperiled group of animals."

With further research, Hua hopes to test other amphibian species and look closer at why cold temperatures make amphibians more susceptible to salt during their egg phase.
Contributing to this research were former and current Binghamton University students in the Hua lab: Matthew Wersebe (now at University of Oklahoma), Paradyse Blackwood, Ying Tong Guo, Jared Jaeger (now at Rensselaer Polytechnic Institute), Dyllan May, Sean Ryan (now at University of Connecticut), and Vivian Wong.

The paper, "The effects of different cold-temperature regimes on development, growth, and susceptibility to an abiotic and biotic stressor," was published in Ecology and Evolution.

Binghamton University

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".