Did you get it? I can see it in your eyes

February 20, 2019

How can we tell what a person is thinking? Sometimes, it is enough to observe one's behavior, for example, how they respond to a stimulus in the environment. The same holds for knowing whether one has learned something of importance or is otherwise engaged with their external surrounding. Scientists know that reactions and actions are meaningful, an indeed, observing reactions has been the cornerstone for studying the mechanisms that regulate learning in humans. But is studying responses necessarily the most precise, reliable or informative approach for understanding learning?

Researchers at the University of Trento's Center for Mind/Brain Sciences (CIMeC) addressed these questions in a study published today in the Journal of Vision. Giuseppe Notaro (first author), Uri Hasson (senior author), and their colleagues departed from the observation that many factors intervene between what people actually know, and how they respond based on that knowledge. These factors are known to include the level of attention allocated to external stimuli, the interpretation of sensory information, as well as complex decision processes. All these factors impact how people respond to stimuli they see. However, these factors do not impact anticipatory movements, and the authors examined whether it is possible to determine what people know, and how they learn, by studying only anticipatory behaviors. Their findings suggest that anticipatory behavior may in certain cases be more informative about learning. These results open future developments for studying learning in populations that demonstrate non-reliable responses to external stimulus, such as young children or individuals suffering from physical or mental disorders, for whom it may be more difficult to assess the degree of attention and understanding.

The study

How is possible to know if one is learning and assimilating useful information? The novel answer suggested by the study is that it is useful to observe preparatory, unconscious eye movements, because these offer a window into the process of learning. In the experiment performed, the researchers collected data using an eye-tracker, a device that allows to measure our gaze direction. «We presented volunteers with series of images that were presented on the left or right side of the screen, according to a specific, learnable pattern», Notaro explains: «We observed how fast people were to look at those images, depending on whether the images were presented at an unexpected or expected location. Surprisingly, the position of the eyes before the next image was presented was biased towards the expected position of the next image. This was a very small eye movement that turned out to be highly informative. It let us infer that the brain can prepare in advance, once an information is learnt. This allows to isolate a mental state that holds before obtaining the 'usual' responses that are triggered by external stimuli (such as verbal answers or button presses)».

Application scenarios

These findings open potential application scenarios, including in the areas of education and health, and particularly in relation to populations with attention or communication deficits. «The presence of these anticipatory signals - Hasson adds - provides us with an opportunity to measure attentive capacity and learning with greater precision. These are tiny signals that very likely reflect unconscious processes. At the same time, they are highly reliable, and allow us to forecast how participants may respond to stimuli. The inter-relations of learning and prediction is a topic that arouses much interest transversely, not only in the scientific community, and it touches on areas that may be very close to our daily life. For example, there are already large investments made today in areas such as online advertisement and entertainment that aim to study people's eye movements and how those forecast behavior and memory. Identifying an anticipatory signature in eye movements can advance those areas as well».
The study was financed by a European Research Council grant to UH (ERC-STG #263318) and is part of a research program examining how the brain codes the past to predict the future. The article is available since today in Open Access format.

Università di Trento

Related Learning Articles from Brightsurf:

Learning the language of sugars
We're told not to eat too much sugar, but in reality, all of our cells are covered in sugar molecules called glycans.

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.

Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.

How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.

School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.

Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.

Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.

Read More: Learning News and Learning Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.