Nav: Home

New therapeutic strategy to treat Alzheimer's

February 20, 2019

Researchers from the Institute of Neurosciences of the University of Barcelona (UBNeuro) have identified a potential therapeutic strategy to treat Alzheimer's, according to a study published in Journal of Neuroscience. The study shows, in a model of the illness in mice, that astrocytes -a type of cells in the brain- are able to release proteins that favour survival of neurons. According to the researchers, these results are a step forward in the understanding of the physiology of astrocytes, and they bring the chance to use this type of cells in therapeutic ways to treat Alzheimer's.

The study is led by Albert Giralt, Ramon y Cajal researcher at the UB, and also signed by the experts Jordi Alberch, Laura López Molina, Anna Sancho-Balsells, Ana López and Silvia Ginés, from the Faculty of Medicine and Health Sciences and UBNeuro, and members of the August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and the Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).

Other participants in the study are José María Delgado García and Angès Gruart, from Universidad Pablo de Olavide, and other experts from Inserm (France) and Institut du Fer à Moulin (France).

A promising strategy with important challenges

Alzheimer's disease is the most common dementia among people. Neurodegeneration in patients with this disease causes damage in memory and in other cognitive skills, sometimes combined with symptoms such as mood swings and personality changes. One of the most promising therapies against Alzheimer's is the use of neurotrophic factors -a family of proteins favouring neuron survival- such as the brain-derived neurotrophic factor (BDNF). However, BDNF administration has important challenges, such as the lack of control of its release, which does not allow leading it specifically to the sick tissue nor releasing the proper amount of levels, mainly considering high doses can be neurotoxic.

In this study, researchers studied BDNF generated by astrocytes, a type of star-shaped glial cells in the brain and the spinal cord. Astrocytes are affected by one of the neuroinflammation processes of Alzheimer's, the astrogliosis, in which the glial fibrillary astrocytic protein (GFAP) and its coding gene are the most altered ones. In this context, researchers designed an experiment in which genetically modified mice suffer from Alzheimer's and produce the BDNF protein depending on the GFAP levels. "With this design, from the moment neuroinflammation and pathology came up, the astrocytes could generate BDNF in the most affected areas of the sick brain. Therefore, the endogen reactions of the brain would regulate BDNF administration depending on the severity of the disease", says Albert Giralt, member of the Consolidated Research Group on Physiopathology of Neurodegenerative Diseases of the UB.

Effects of neuron formation and plasticity

The study shows this method restores the production and release of the neurotrophin in the sick neuronal tissue when the pathology starts. Then, the BDNF generated by astrocytes regulates neuron formation in samples of in vitro neuronal cultures and has cognitive effects in transgenic mice models. "These results show for the first time that astrocytes, so far regarded as neuronal, can produce BDNF and have the necessary molecular mechanisms to release it in the areas of the diseased tissue which requires activity to favour neuronal survival", says Albert Giralt.

Researchers also note that "the singularity of the design of the experiment enabled the astroglial cells to 'decide' when, where and what amount to produce and give BDNF to altered brain tissues". Therefore, "traits of the patient can mark endogenously and self-regulated the dose and other necessary therapeutic dynamics for a customized treatment".

Although the use of this therapy in humans is still far from taking place, researchers note the use of astrocytes out of induced pluripotent stem cells as a promising therapeutic strategy to be explored. "One possibility would be to derive induced stem cells from the skin of the patients, and then modify them genetically in vitro to express the BDNF under the GFAP promoter. Last, the last step would be to differentiate them and move them to the most altered brain regions of patients to boost survival and proper functioning of the existing neurons", notes Albert Giralt.

Viability in other neurodegenerative diseases

This study using neuroinflammation processes makes it possible to apply them to other neurodegenerative diseases. "Our objective is, on the one hand, making this therapeutic approach plausible for the use in humans, and on the other, present similar approaches for neurodegenerative diseases in which neuroinflammation is a main symptom", concludes the researcher.
-end-


University of Barcelona

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...