Nav: Home

Earth may be 140 years away from reaching carbon levels not seen in 56 million years

February 20, 2019

\ WASHINGTON -- Total human carbon dioxide emissions could match those of Earth's last major greenhouse warming event in fewer than five generations, new research finds.

A new study finds humans are pumping carbon dioxide into the atmosphere at a rate nine to 10 times higher than the greenhouse gas was emitted during the Paleocene-Eocene Thermal Maximum (PETM), a global warming event that occurred roughly 56 million years ago.

The results suggest if carbon emissions continue to rise, the total amount of carbon dioxide injected into the atmosphere since humans started burning fossil fuels could equal the amount released during the PETM as soon as 2159.

"You and I won't be here in 2159, but that's only about four generations away," said Philip Gingerich, a paleoclimate researcher at the University of Michigan and author of the new study in the AGU journal Paleoceanography and Paleoclimatology. "When you start to think about your children and your grandchildren, and your great-grandchildren, you're about there."

Scientists often use the PETM as a benchmark against which to compare modern climate change. But the new study shows we're on track to meet this benchmark much sooner than previously thought, as the pace of today's warming far outstrips any climate event that has happened since the extinction of the dinosaurs.

"Given a business-as-usual assumption for the future, the rates of carbon release that are happening today are really unprecedented, even in the context of an event like the PETM," said Gabriel Bowen, a geophysicist at the University of Utah who was not connected to the new study. "We don't have much in the way of geologic examples to draw from in understanding how the world responds to that kind of perturbation."

The exact environmental consequences of PETM-like carbon levels are unclear, but the increased temperatures will likely drive many species to extinction with the lucky ones being able to adapt or migrate, according to Larisa DeSantis, a paleontologist at Vanderbilt University who was not connected to the new study. In addition, it will take thousands of years for the climate system cool down, she said.

"It's not just about 100 years from now; it's going to take significant periods of time for that carbon dioxide to make its way back into the Earth's crust," DeSantis said. "It's not a short-term event. We're really committing ourselves to many thousands of years of a warmer world if we don't take action quickly."

Studying past climate change

The PETM was a global warming event that occurred roughly 56 million years ago. Scientists are unsure what caused it, but during the event massive quantities of carbon dioxide were released into Earth's atmosphere, rapidly spiking global temperatures by 5 to 8 degrees Celsius (9 to 14 degrees Fahrenheit). Average global temperatures during the PETM peaked at about 23 degrees Celsius (73 degrees Fahrenheit), about 7 degrees Celsius (13 degrees Fahrenheit) higher than today's average.

Scientists think that during this time and the warm period that followed, the poles were ice-free and the Arctic was home to palm trees and crocodiles. It's not the hottest Earth has ever been, but the PETM was the warmest period since the extinction of the dinosaurs 66 million years ago.

Scientists can't pin down exactly how much carbon was injected into the atmosphere during the PETM or exactly how long the event lasted. But their best estimates say between 3,000 and 7,000 gigatons of carbon accumulated over a period of 3,000 to 20,000 years, based on ocean sediment cores that show changes to carbonate minerals laid down during this time.

The massive carbon release and temperature spike drastically altered Earth's climate, causing a major extinction of organisms in the deep ocean that are a key link in the marine food web. Land animals got smaller and migrated north to cooler climates. Some groups of modern mammals, including primates, appeared for the first time soon after the PETM, but scientists are unsure whether this happened as a direct result of the rapid environmental change.

Comparing past with present

Climate scientists use the PETM as a case study for understanding what environmental changes might happen under current human-caused climate change and when those changes might take effect. But they can only average carbon emissions during the PETM over the whole duration of the event - thousands of years. They don't know what those emissions rates were like on a yearly basis, so it's difficult to compare them to the pace of carbon emissions today.

In the new study, Gingerich found a way to mathematically compare modern carbon emissions to PETM emissions on the same time scale. The results showed current carbon emission rates are nine to 10 times higher than those during the PETM.

"To me, it really brought home how rapidly and how great the consequences are of the carbon we're producing as a people," Gingerich said.

Projecting current emissions into the future, Gingerich found that if emissions continue to rise, we could be facing another PETM-like event in fewer than five generations. The total carbon accumulated in the atmosphere could hit the lowest estimate of carbon accumulated during the PETM - 3,000 gigatons - in the year 2159. It would hit the maximum estimated emissions - 7,126 gigatons - in 2278, based on Gingerich's calculations. Humans have emitted roughly 1,500 gigatons of carbon as of 2016.

"The fact that we could reach warming equivalent to the PETM very quickly, within the next few hundred years, is terrifying," DeSantis said.

The findings suggest scientists may not be able to predict the environmental or biological changes that will happen in the coming years based on what happened during the PETM because today's warming is occurring so much faster, according to DeSantis. What makes predictions harder is that today's climate starts from a cooler baseline than the PETM and the species that inhabit Earth are different than those of 56 million years ago.

"It's hard to compare biotic effects because the world during the PETM was quite different," DeSantis said. "We live in a very different world today, with different groups of animals, with humans being the dominant species... but we know there are many negative consequences of dramatic warming on vast numbers of species, including our own."
-end-
Founded in 1919, AGU is a not-for-profit scientific society dedicated to advancing Earth and space science for the benefit of humanity. We support 60,000 members, who reside in 135 countries, as well as our broader community, through high-quality scholarly publications, dynamic meetings, our dedication to science policy and science communications, and our commitment to building a diverse and inclusive workforce, as well as many other innovative programs. AGU is home to the award-winning news publication Eos, the Thriving Earth Exchange, where scientists and community leaders work together to tackle local issues, and a headquarters building that represents Washington, D.C.'s first net zero energy commercial renovation. We are celebrating our Centennial in 2019. #AGU100

Notes for Journalists

This paper is freely available through March 31. Journalists and public information officers (PIOs) can download a PDF copy of the article by clicking on this link: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2018PA003379

Journalists and PIOs may also request a copy of the final paper by emailing Lauren Lipuma at llipuma@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Paper Title: "Temporal Scaling of Carbon Emission and Accumulation Rates: Modern Anthropogenic Emissions Compared to Estimates of PETM-Onset Accumulation"

Authors: Philip D. Gingerich: Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, U.S.A.

This press release and accompanying images can be found at: https://news.agu.org/press-release/earth-may-be-140-years-away-from-reaching-carbon-levels-not-seen-in-56-million-years/

Earth may be 140 years away from reaching carbon levels not seen in 56 million years

AGU press contact:

Lauren Lipuma
+1 (202) 777-7396
llipuma@agu.org

University of Michigan press contact:

Jim Erickson
+1 (734) 647-1842
ericksn@umich.edu

Contact information for the researcher:

Philip Gingerich
+1 (734) 660-4468
gingeric@umich.edu

American Geophysical Union

Related Greenhouse Gas Articles:

Models, observations not so far apart on planet's response to greenhouse gas emissions
Recent observations suggest less long-term warming, or climate sensitivity, than the predicted by climate models.
Gas hydrate breakdown unlikely to cause massive greenhouse gas release
A recent interpretive review of scientific literature performed by the US Geological Survey and the University of Rochester sheds light on the interactions of gas hydrates and climate.
New Marcellus development boom will triple greenhouse gas emissions from PA's natural gas
Natural gas production on Pennsylvania's vast black shale deposit known as the Marcellus Shale will nearly double by 2030 to meet growing demand, tripling Pennsylvania's greenhouse gas emissions from the natural gas sector relative to 2012 levels, according to a report published today by Delaware Riverkeeper Network.
UCI scientists identify a new approach to recycle greenhouse gas
Using a novel approach involving a key enzyme that helps regulate global nitrogen, University of California, Irvine molecular biologists have discovered an effective way to convert carbon dioxide (CO2) to carbon monoxide (CO) that can be adapted for commercial applications like biofuel synthesis.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Drying Arctic soils could accelerate greenhouse gas emissions
A new study published in Nature Climate Change indicates soil moisture levels will determine how much carbon is released to the atmosphere as rising temperatures thaw Arctic lands.
'Watchdog' for greenhouse gas emissions
Mistakes can happen when estimating emissions of greenhouse gases such as carbon dioxide and methane.
Greenhouse gas mitigation potential from livestock sector revealed
Scientists have found that the global livestock sector can maintain the economic and social benefits it delivers while significantly reducing emissions, and in doing so help meet the global mitigation challenge.
Greenhouse gas 'bookkeeping' turned on its head
For the first time scientists have looked at the net balance of the three major greenhouse gases -- carbon dioxide, methane, and nitrous oxide -- for every region of Earth's landmasses.
Soil frost affects greenhouse gas emissions in the Arctic
Soil frost is a nearly universal process in the Arctic.

Related Greenhouse Gas Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...