Nav: Home

Ingredients for water could be made on surface of moon, a chemical factory

February 20, 2019

When a stream of charged particles known as the solar wind careens onto the Moon's surface at 450 kilometers per second (or nearly 1 million miles per hour), they enrich the Moon's surface in ingredients that could make water, NASA scientists have found.

Using a computer program, scientists simulated the chemistry that unfolds when the solar wind pelts the Moon's surface. As the Sun streams protons to the Moon, they found, those particles interact with electrons in the lunar surface, making hydrogen (H) atoms. These atoms then migrate through the surface and latch onto the abundant oxygen (O) atoms bound in the silica (SiO2) and other oxygen-bearing molecules that make up the lunar soil, or regolith. Together, hydrogen and oxygen make the molecule hydroxyl (OH), a component of water, or H2O.

"We think of water as this special, magical compound," said William M. Farrell, a plasma physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who helped develop the simulation. "But here's what's amazing: every rock has the potential to make water, especially after being irradiated by the solar wind."

Understanding how much water -- or its chemical components -- is available on the Moon is critical to NASA's goal of sending humans to establish a permanent presence there, said Orenthal James Tucker, a physicist at Goddard who spearheaded the simulation research.

"We're trying to learn about the dynamics of transport of valuable resources like hydrogen around the lunar surface and throughout its exosphere, or very thin atmosphere, so we can know where to go to harvest those resources," said Tucker, who recently described the simulation results in the journal JGR Planets.

Several spacecraft used infrared instruments that measure light emitted from the Moon to identify the chemistry of its surface. These include NASA's Deep Impact spacecraft, which had numerous close encounters with the Earth-Moon system en route to comet 103P/Hartley 2; NASA's Cassini spacecraft, which passed the Moon on its way to Saturn; and India's Chandrayaan-1, which orbited the Moon a decade ago. All found evidence of water or its components (hydrogen or hydroxyl).

But how these atoms and compounds form on the Moon is still an open question. It's possible that meteor impacts initiate the necessary chemical reactions, but many scientists believe that the solar wind is the primary driver.

Tucker's simulation, which traces the lifecycle of hydrogen atoms on the Moon, supports the solar wind idea.

"From previous research, we know how much hydrogen is coming in from the solar wind, we also know how much is in the Moon's very thin atmosphere, and we have measurements of hydroxyl in the surface," Tucker said. "What we've done now is figure out how these three inventories of hydrogen are physically intertwined."

Showing how hydrogen atoms behave on the Moon helped resolve why spacecraft have found fluctuations in the amount of hydrogen in different regions of the Moon. Less hydrogen accumulates in warmer regions, like the Moon's equator, because hydrogen atoms deposited there get energized by the Sun and quickly outgas from the surface into the exosphere, the team concluded. Conversely, more hydrogen appears to accumulate in the colder surface near the poles because there's less Sun radiation and the outgassing is slowed.

Overall, Tucker's simulation shows that as solar wind continually blasts the Moon's surface, it breaks the bonds among atoms of silicon, iron and oxygen that make up the majority of the Moon's soil. This leaves oxygen atoms with unsatisfied bonds. As hydrogen atoms flow through the Moon's surface, they get temporarily trapped with the unhinged oxygen (longer in cold regions than in warm). They float from O to O before finally diffusing into the Moon's atmosphere, and, ultimately, into space. "The whole process is like a chemical factory," Farrell said.

A key ramification of the result, Farrell said, is that every exposed body of silica in space -- from the Moon down to a small dust grain -- has the potential to create hydroxyl and thus become a chemical factory for water.
-end-
Goddard physicist Rosemary Margaret Killen and Dana M. Hurley, planetary scientist at Johns Hopkins University in Baltimore, Maryland, contributed to the simulation research, which was funded by NASA's Solar System Exploration Research Virtual Institute.

NASA/Goddard Space Flight Center

Related Hydrogen Articles:

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.