Nav: Home

Russian researchers made gold nano-stars for intracellular delivery

February 20, 2019

Researchers from Russian Academy of Sciences developed a new method for star-shaped nanoparticles synthesis based on laser irradiation. A wide range of customizable conditions provides an opportunity to create comfortable environment for various substances delivery to different types of cells. The results are published in Journal of Biophotonics. The research was supported by the Russian Science Foundation (RNF).

Intracellular delivery systems are of great importance for clinical and laboratory biomedical research. The latest techniques based on viral agents, chemical exposure and microinjections are aimed at achieving maximum efficiency while ensuring high cell viability. However, none of the currently known methods fully satisfies such requirements as compatibility with various cell types and delivered objects, minimal toxicity, maximum efficiency, relative cheapness and simplicity of execution.

The authors of the new study developed a new delivery method using gold nano-stars: star-shaped nanoparticles with sharp spikes. The researchers obtained them by reducing gold ions on spherical embryos of the same metal. After that the nano-stars were deposited in the form of single layers on the plastic surface and covered with cells. Laser irradiation caused electromagnetic waves to travel on the nanoparticles surface, thus transporting substances into the cell.

Scientists used pGFP (circular DNA with a gene encoding a fluorescent protein) to test the effectiveness of the developed method. They aimed at delivering this molecules into HeLa cells: human cervical cancer lines. This combination of model cells and the delivered object was chosen due to the frequent use of HeLa cells in clinical and biochemical studies, as well as easy testing since cells to which pGFP was successfully delivered are glowing. The efficiency of the developed method for model cells turned out to be more than 95%. Creating cell-friendly conditions led to almost absolute survival (about 92%), while after delivering in one of the most popular ways -- using TurboFect chemical agent -- about 75% of the cells survived.

The developed methodis simpler and cheaper than traditional commercial systems for the delivery of molecules into the cell. The advantages can also include the absence of direct contact of target substances and cells with nanoparticles, which reduces the likelihood of damage to cells and delivered substances/ Moreover, the spiked surface of nano-stars creates comfortable conditions for cell growth and adhesion (cell attachment to each other and to the surface). This makes the method applicable for delivering a wide range of molecules to different cells.

"We have developed and optimized a new platform for creating pores in cells based on monolayers of gold nano-stars using continuous laser radiation. Using this method, it is possible to produce highly efficient intracellular delivery of various substances in delicate conditions. We assume that methods using such nanoparticles can be an alternative to existing technologies of intracellular delivery of biomolecules for use in gene therapy, targeted drug application, obtaining modified cell cultures and other biomedical research," explains Timofey Pylaev, one of the authors of the study from Russian Academy of Sciences.
-end-


AKSON Russian Science Communication Association

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".