Nav: Home

New insight on potent HIV antibody could improve vaccine design

February 20, 2019

DURHAM, N.C. - In the quest to develop an effective HIV vaccine, researchers have focused attention on identifying and targeting the region of the virus's outer envelope where a lineage of antibodies are able to dock and neutralize the virus.

But true to form with HIV, these broadly neutralizing antibodies, or bnAbs, are highly complex and arise under an intricate series of events that have been difficult to trace backward to their origins and recreate.

A new observation, led by researchers at the Duke Human Vaccine Institute, highlights the importance of previously unstudied mutations that arises early in bnAbs, giving the antibodies the flexibility to adapt to changes in the virus's outer envelope protein structure. This flexibility enables the antibody to dock on diverse strains of the virus and more potently neutralize them.

The finding was published this month in the journal Nature Communications.

"We focused on mutations in a specific region of the antibody called the 'elbow region,' which is required for making the antibodies more flexible and for their function in neutralizing HIV-1 viruses," said senior author S. Munir Alam, Ph.D., director of the Duke Human Vaccine Institute Laboratory of Immune Recognition and Biomolecular Interaction Analysis Core.

"We found that the selection of key elbow mutations and the flexibility trait is a required step in the early stage of maturation of a broadly neutralizing lineage," Alam said.

Alam and colleagues, including co-lead authors Rory Henderson and Brian E. Watts, used biophysical tools and molecular dynamic simulation methods that enabled the team to study changes in antibody molecular motion over time. This modeling enabled them to learn of the additional roadblock to HIV bnAb development.

"Vaccine design strategies will need to incorporate the requirement of the selection of key elbow region mutations in the early stage of the immunization regimen," Henderson said.
-end-
In addition to Alam, Henderson and Watts, study authors include Hieu N. Ergin, Kara Anasti, Robert Parks, Shi-Mao Xia, Ashley Trama, Hua-Xin Liao, Keven O. Saunders, Mattia Bonsignori, Keven Wiehe and Barton F. Haynes.

Duke University Medical Center

Related Hiv Articles:

Defective HIV proviruses reduce effective immune system response, interfere with HIV cure
A new study finds defective HIV proviruses, long thought to be harmless, produce viral proteins and distract the immune system from killing intact proviruses needed to reduce the HIV reservoir and cure HIV.
1 in 7 people living with HIV in the EU/EEA are not aware of their HIV status
Almost 30,000 newly diagnosed HIV infections were reported by the 31 European Union and European Economic Area (EU/EEA) countries in 2015, according to data published today by ECDC and the WHO Regional Office for Europe.
Smoking may shorten the lifespan of people living with HIV more than HIV itself
A new study led by researchers at Massachusetts General Hospital finds that cigarette smoking substantially reduces the lifespan of people living with HIV in the US, potentially even more than HIV itself.
For smokers with HIV, smoking may now be more harmful than HIV itself
HIV-positive individuals who smoke cigarettes may be more likely to die from smoking-related disease than the infection itself, according to a new study published in the Journal of Infectious Diseases.
Patients diagnosed late with HIV infection are more likely to transmit HIV to others
An estimated 1.2 million people live with HIV in the United States, with nearly 13 percent being unaware of their infection.
The Lancet HIV: New HIV infections stagnating at 2.5 million a year worldwide
A major new analysis from the Global Burden of Disease 2015 study, published today in The Lancet HIV journal, reveals that although deaths from HIV/AIDS have been steadily declining from a peak in 2005, 2.5 million people worldwide became newly infected with HIV in 2015, a number that hasn't changed substantially in the past 10 years.
NIH scientists discover that defective HIV DNA can encode HIV-related proteins
Investigators from the National Institutes of Health have discovered that cells from HIV-infected people whose virus is suppressed with treatment harbor defective HIV DNA that can nevertheless be transcribed into a template for producing HIV-related proteins.
Study examines risk of HIV transmission from condomless sex with virologically suppressed HIV infection
Among nearly 900 serodifferent (one partner is HIV-positive, one is HIV-negative) heterosexual and men who have sex with men couples in which the HIV-positive partner was using suppressive antiretroviral therapy and who reported condomless sex, during a median follow-up of 1.3 years per couple, there were no documented cases of within-couple HIV transmission, according to a study appearing in the July 12 issue of JAMA, an HIV/AIDS theme issue.
HIV vaccine design should adapt as HIV virus mutates
Researchers from UAB, Emory and Microsoft demonstrate that HIV has evolved to be pre-adapted to the immune response, worsening clinical outcomes in newly infected patients.
Charlie Sheen's HIV disclosure may reinvigorate awareness, prevention of HIV
Actor Charlie Sheen's public disclosure in November 2015 that he has the human immunodeficiency virus (HIV) corresponded with the greatest number of HIV-related Google searches ever recorded in the United States, according to an article published online by JAMA Internal Medicine.

Related Hiv Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".