Nav: Home

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. The data have led to the extraction of a universal function that describes the EMC Effect, the once-shocking discovery that quarks inside nuclei have lower average momenta than predicted, and supports an explanation for the effect. The study has been published in the journal Nature.

The EMC Effect was first discovered just over 35 years ago by the European Muon Collaboration in data taken at CERN. The collaboration found that when they measured quarks inside a nucleus, they appeared different from those found in free protons and neutrons.

"There are currently two main models that describe this effect. One model is that all protons and neutrons in a nucleus [and thus their quarks] are modified and they are all modified the same way," says Douglas Higinbotham, a Jefferson Lab staff scientist.

"The other model, which is the one that we focus on in this paper, is different. It says that many protons and neutrons are behaving as if they are free, while others are involved in short-range correlations and are highly modified," he explains.

Short-range correlations are fleeting partnerships formed between protons and neutrons inside the nucleus. When a proton and a neutron pair up in a correlation, their structures overlap briefly. The overlap lasts just moments before the particles part ways.

The universal modification function was developed from a careful re-analysis of data from an experiment conducted in 2004 using Jefferson Lab's Continuous Electron Beam Accelerator Facility, a DOE Office of Science User Facility. CEBAF produced a 5.01 GeV beam of electrons to probe nuclei of carbon, aluminum, iron and lead as compared to deuterium (an isotope of hydrogen containing a proton and neutron in its nucleus).

When the authors compared the data from each of these nuclei to deuterium, they saw the same pattern emerge. The nuclear physicists derived from this information a universal modification function for short-range correlations in nuclei. They then applied the function to the nuclei used in measurements of the EMC Effect, and they found that it was the same across all measured nuclei that they considered.

"Now we have this function, where we have neutron-proton short-range correlated pairs, and we believe that it can describe the EMC Effect," says Barak Schmookler, a former MIT graduate student and now Stony Brook University postdoctoral scientist who led this research effort and is the paper's lead author.

He says that he and his colleagues think what's going on is that the roughly 20 percent of the nucleons in a nucleus's correlated pairs at any one time has an out-sized effect on measurements of the EMC Effect.

"We think that when protons and neutrons inside the nucleus overlap in what we call short-range correlated pairs, the quarks have more room to maneuver, and therefore, move more slowly than they would in a free proton or neutron," he explains.

"The picture before this model is that all protons and neutrons, when they are stuck together in a nucleus, all of their quarks start to slow down. And what this model suggests is that most protons and neutrons carry on like nothing's changed, and it's the select protons and neutrons that are in these pairs that really have a significant change to their quarks," explains Axel Schmidt, an MIT postdoctoral fellow and co-author.

Higinbotham says whether or not this detailed picture of what's happening in the nucleus can be confirmed, for now, the universal modification function does seem to tie all of the elements of this mystery together in a self-consistent way.

"So, we've shown that pairs are pairs and they behave the same way, whether they are in a lead or a carbon nucleus. We've also shown that when the number of pairs are different because they are in different nuclei, they are still collectively acting in basically the same way," Higinbotham explains. "So what we think we've found is that with one physical picture, we can explain both the EMC Effect and short-range correlations."

If it holds up, that physical picture of short-range correlations as the cause of the EMC Effect also accomplishes another step toward a long-time goal of nuclear and particle physicists to connect our two different views of the atom's nucleus: as it being made up of protons and neutrons, versus as it being made up of their constituent quarks.

The nuclear physicists have already begun working on the next step in confirming this new hypothesis, which is to measure the quark structure of protons engaged in short-range correlations and compare that with un-correlated protons.

"The next thing we're going to do is an experiment that we're running in Jefferson Lab's Experimental Hall B with the Back-Angle Neutron Detector. It will measure the proton when it's in deuterium and moving at different speeds. So, we want to compare slow- and fast-moving protons" says Lawrence Weinstein, a lead coauthor and Professor & Eminent Scholar at Old Dominion University. "That experiment will get enough data to answer the question. This one points strongly to an answer, but it's not definitive."

Beyond that, the next goal of the collaboration is to begin considering how short-range correlations and the EMC Effect may be researched further at a future potential electron-ion collider. The collaboration is now working on a project to determine the best way to accomplish that goal, using funds provided by Jefferson Lab's Lab-Directed R&D program.
-end-
This analysis was carried out as part of the Jefferson Lab Hall B Data-Mining project. The project is supported by DOE's Office of Science. The research was also supported by the National Science Foundation, the Israel Science Foundation, the Chilean Comisión Nacional de Investigación Científica y Tecnológica, the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the French-American Cultural Exchange, the Italian Istituto Nazionale di Fisica Nucleare, the National Research Foundation of Korea, and the UK's Science and Technology Facilities Council.

Further Reading:

Protons Get Zippier in Neutron-Rich Nuclei
Protons Pair Up with Neutrons
Protons Hog the Momentum in Neutron-Rich Nuclei

Jefferson Science Associates, LLC, a joint venture of the Southeastern Universities Research Association, Inc. and PAE, manages and operates the Thomas Jefferson National Accelerator Facility, or Jefferson Lab, for the U.S. Department of Energy's Office of Science.

Jefferson Lab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Thomas Jefferson National Accelerator Facility

Related Nuclear Articles:

Six degrees of nuclear separation
For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors.
How to dismantle a nuclear bomb
MIT team successfully tests a new method for verification of weapons reduction.
Material for nuclear reactors to become harder
Scientists from NUST MISIS developed a unique composite material that can be used in harsh temperature conditions, such as those in nuclear reactors.
Nuclear physics -- probing a nuclear clock transition
Physicists have measured the energy associated with the decay of a metastable state of the thorium-229 nucleus.
Milestones on the way to the nuclear clock
For decades, people have been searching for suitable atomic nuclei for building an ultra-precise nuclear clock.
Nuclear winter would threaten nearly everyone on Earth
If the United States and Russia waged an all-out nuclear war, much of the land in the Northern Hemisphere would be below freezing in the summertime, with the growing season slashed by nearly 90 percent in some areas, according to a Rutgers-led study.
The vanishing nuclear industry
Could nuclear power make a significant contribution to decarbonizing the US energy system over the next three or four decades?
Balancing nuclear and renewable energy
Argonne researchers explore the benefits of adjusting the output of nuclear power plants according to the changing supply of renewable energy such as wind and solar power.
En route to the optical nuclear clock
Together with colleagues from Munich and Mainz, researchers at the Physikalisch-Technische Bundesanstalt (PTB) have performed the first-ever optical measurements of some important properties of the low-energy state of the Th-229 nucleus.
What's next for nuclear medicine training?
The 'Hot Topic' article in the October issue of the Journal of Nuclear Medicine, titled Nuclear Medicine Training: What Now?, examines the role of nuclear medicine in the era of precision medicine and the need for training to evolve with the practice.
More Nuclear News and Nuclear Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.