Nav: Home

Life-changing magic of tidying up: Complex structures' organization studied in slime mold

February 20, 2019

Researchers in Japan think they have found an answer to the fundamental biological question of how individual cells know which way to position themselves within a complex, multicellular body. Depending on a cell's purpose in the larger structure, contact or diffuse chemical signals direct it to its final destination.

The journey from egg and sperm to a fully grown body requires more than just multiplication. Plants, animals, and people are all made of trillions of cells, carefully organized into larger structures like tissues and organs. Somehow, each cell knows where it belongs - the left side of the heart, the inner lining of the colon, and so on - and generally stays put.

"It's close to impossible to dissect what's happening while cells position themselves in multicellular organisms because there are so many players: different cell types, different molecules inside cells, different chemical signals outside the cells, cell growth, programmed cell death," said Professor Satoshi Sawai from the University of Tokyo, an expert in biological physics, a field that uses the principles of physics to understand living systems.

The slime mold system

Slime molds provide a simpler system to understand cell positioning. Slime molds are amoebas, but are similar in size and shape to human white blood cells and share the fundamental aspects of cell dynamics, such as migration and engulfment of disease-causing pathogens.

Individual cells of the slime mold Dictyostelium discoideum can exist independently, living freely in the soil and eating bacteria and fungi. When food is scarce, independent slime mold cells clump together and function as a multicellular organism.

When slime mold cells clump together, sometimes 100 cells, other times 10,000 cells, they differentiate into two distinct types.

The first type, pre-stalk cells, eventually forms a column that supports a sphere composed of the second type, pre-spore cells. Researchers call this two-part structure a fruiting body. The pre-stalk cells will die as the pre-spore cells eventually float off in the wind to a better environment where they can grow and divide again as independent amoebas.

Inside the clump, before the fruiting body takes shape, cells attach to form long trains and swirl around, immersed in a chemical signal that they secrete. First identified in the 1970s, this diffusive chemical, called cAMP, attracts cells.

Traditionally, the degree of attraction to cAMP signals was thought to separate the cells into pre-stalk and pre-spore cells. More recent genetic experiments revealed, however, that molecules related to adhesion, or cell-to-cell touch, may also be important.

"What's great about slime mold is that you can take individual cells out of the larger structure and they still do their thing by behaving naturally in a relatively simple setup that mimics the multicellular environment," said Sawai.

Two types of signals

In their new experiments, the researchers took cells out of a multicellular clump and tracked how the individual cells migrate in response to artificial touch and cAMP signals.

When cell trains formed, the leader cell moved in the direction of cAMP. The follower cells were not pulled along, but rather actively pushed leader cells forward.

"Cell-cell contact activates processes for cell movement. The follower cells are the engine and the leader cells are the steering wheel, always pointing in the direction of the chemical signal," said Sawai.

Researchers also placed individual pre-stalk or pre-spore cells with beads coated with an adhesion molecule that appears to function in the tail end of cells. All cells attached to follow the bead as in a cell train. Researchers then added cAMP to the experiment. Pre-stalk cells released the bead and moved towards the cAMP source. Pre-spore cells, however, ignored cAMP and held fast to the bead.

Sawai's research team demonstrated that head-to-tail touch between cells directs their migration, but cAMP somehow overrides this contact only in pre-stalk cells.

"Many people think you have to go to Mars to look for the fundamental rules of what makes life. But we can look at all the still-unexplored branches of the tree of life here on Earth. Slime mold gives us hints at what to look for to understand the mechanistic logics underlying more complex species," said Sawai.

This discovery of the importance of cell-cell contact to activate cell movement and organization will open new possibilities to study cell-pattern formation in events such as embryo development or spread of breast cancer.

The results are published in the Proceedings of the National Academy of Sciences of the United States of America.
-end-
Journal Article

Taihei Fujimori, Akihiko Nakajima, Nao Shimada, and Satoshi Sawai. 2019. Tissue self-organization based on collective cell migration by contact activation of locomotion and chemotaxis. PNAS. DOI: 10.1073/pnas.1815063116

Related Links

Graduate School of Arts and Sciences
Department of Basic Science
Sawai Laboratory website (Japanese only)

Research Contact

Professor Satoshi Sawai
Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, JAPAN
Tel: +81-(0)3 -5841-6737
Email: cssawai@mail.ecc.u-tokyo.ac.jp

Press Contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-(0)3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Chemical Signals Articles:

Nonverbal signals can create bias against larger groups
If children are exposed to bias against one person, will they develop a bias against that person's entire group?
Looking for 'help' signals in the blood of newborns with HIE
Measuring a number of biomarkers over time that are produced as the body responds to inflammation and injury may help to pinpoint newborns who are more vulnerable to suffering lasting brain injury due to disrupted oxygen delivery and blood flow, according to research presented during the Pediatric Academic Societies 2019 Annual Meeting.
Embryos' signals take multiple paths
Rice University bioscientists uncover details about how embryonic stem cells respond to the collection of signals that direct their differentiation into blood, bone and tissue.
Electrical signals kick off flatworm regeneration
In a study publishing March 5 in Biophysical Journal, scientists report that electrical activity is the first known step in the tissue-regeneration process of planarian flatworms, starting before the earliest known genetic machinery kicks in and setting off the downstream activities of gene transcription needed to construct new heads or tails.
Signals from distant lightning could help secure electric substations
Side channel signals and bolts of lightning from distant storms could one day help prevent hackers from sabotaging electric power substations and other critical infrastructure, a new study suggests.
More Chemical Signals News and Chemical Signals Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...