Nav: Home

Study finds way to potentially improve immunotherapy for cancer

February 20, 2019

LOS ANGELES (EMBARGOED UNTIL FEB. 20, 2019, AT 2:00 P.M. EST) -- A new study has identified a drug that potentially could make a common type of immunotherapy for cancer even more effective. The study in laboratory mice found that the drug dasatinib, which is FDA-approved to treat certain types of leukemia, greatly enhances responses to a form of immunotherapy that is used against a wide range of other cancers.

"If our findings are confirmed in clinical trials, it means that by combining both types of drugs, we may be able to better shrink or even eliminate tumors in bladder, breast, colon, melanoma and sarcoma cancers," said corresponding author Dan Theodorescu, MD, PhD, director of Cedars-Sinai Cancer. The study was published today in Science Advances.

Immunotherapies are designed to help patients' own immune systems fight various cancers. The study focused on one class of immunotherapy called checkpoint inhibitors, which involve a protein called PD-1. This protein acts as an off switch to keep immune cells known as T-cells from attacking normal cells in the body when they come in contact with another similarly named protein, PD-L1. Normal cells have PD-L1, which tells the T-cells not to attack them. Cancer cells, however, have especially large amounts of PD-L1, which serves to deceive T-cells into thinking the cancer cells are normal.

This deception by the cancer cells allows them to dodge the immune system and to invade and flourish. Anti-PD-1 therapies disrupt the cancer cells' signals, allowing the T-cells to attack cancer.

"While many patients show durable responses to anti-PD-1 therapies, a significant number remain unresponsive or have recurrences, highlighting an urgent need to better understand and improve these therapies," Theodorescu said.

To attack this problem, the researchers searched for genes in mouse cancer cells that potentially could be inhibited--in conjunction with anti-PD-1 therapies--and make these therapies more effective. They identified a gene called DDR2 as the best candidate. DDR2 helps tumors invade healthy tissue by coaxing cancer cells to spread and grow. The researchers found that by depleting DDR2 with the drug dasatinib, they were able to increase the sensitivity of the cancer cells to anti-PD-1 therapy by combining the two, which is significantly more effective than using each drug on its own, Theodorescu said.

"Novel, next-generation immunotherapy approaches for cancer highlight the importance of laboratory discoveries such as these," said Robert Figlin, MD, professor of Medicine and Biomedical Sciences and director of the Division of Hematology Oncology. "They can be tested rapidly in the clinic, across multiple disease types, to offer patients results that immunotherapy by itself may not be able to optimally accomplish."
-end-
Note: The research was carried out by a multicenter team that also included investigators from the University of Colorado, including lead study author Megan M. Tu, PhD, and Bristol-Myers Squibb. Theodorescu became director of Cedars-Sinai Cancer in July 2018.

Funding: Research reported in this publication was supported by the Canadian Institute of Health Research Fellowship, the Boettcher Foundation and the National Institutes of Health under award number CA075115.

Disclosure: Theodorescu, Tu and Jason E. Duex, PhD, are inventors on a provisional patent application filed by the University of Colorado and related to this work. (PCT/US2018/043268, filed on 23 July 2018).

Read More on the Cedars-Sinai Blog: Fighting Cancer with the Body's Immune System

URL : http://www.cedars-sinai.org/newsroom/study-finds-way-to-potentially-improve-immunotherapy-for-cancer/

Cedars-Sinai Medical Center

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".