Nav: Home

Study finds way to potentially improve immunotherapy for cancer

February 20, 2019

LOS ANGELES (EMBARGOED UNTIL FEB. 20, 2019, AT 2:00 P.M. EST) -- A new study has identified a drug that potentially could make a common type of immunotherapy for cancer even more effective. The study in laboratory mice found that the drug dasatinib, which is FDA-approved to treat certain types of leukemia, greatly enhances responses to a form of immunotherapy that is used against a wide range of other cancers.

"If our findings are confirmed in clinical trials, it means that by combining both types of drugs, we may be able to better shrink or even eliminate tumors in bladder, breast, colon, melanoma and sarcoma cancers," said corresponding author Dan Theodorescu, MD, PhD, director of Cedars-Sinai Cancer. The study was published today in Science Advances.

Immunotherapies are designed to help patients' own immune systems fight various cancers. The study focused on one class of immunotherapy called checkpoint inhibitors, which involve a protein called PD-1. This protein acts as an off switch to keep immune cells known as T-cells from attacking normal cells in the body when they come in contact with another similarly named protein, PD-L1. Normal cells have PD-L1, which tells the T-cells not to attack them. Cancer cells, however, have especially large amounts of PD-L1, which serves to deceive T-cells into thinking the cancer cells are normal.

This deception by the cancer cells allows them to dodge the immune system and to invade and flourish. Anti-PD-1 therapies disrupt the cancer cells' signals, allowing the T-cells to attack cancer.

"While many patients show durable responses to anti-PD-1 therapies, a significant number remain unresponsive or have recurrences, highlighting an urgent need to better understand and improve these therapies," Theodorescu said.

To attack this problem, the researchers searched for genes in mouse cancer cells that potentially could be inhibited--in conjunction with anti-PD-1 therapies--and make these therapies more effective. They identified a gene called DDR2 as the best candidate. DDR2 helps tumors invade healthy tissue by coaxing cancer cells to spread and grow. The researchers found that by depleting DDR2 with the drug dasatinib, they were able to increase the sensitivity of the cancer cells to anti-PD-1 therapy by combining the two, which is significantly more effective than using each drug on its own, Theodorescu said.

"Novel, next-generation immunotherapy approaches for cancer highlight the importance of laboratory discoveries such as these," said Robert Figlin, MD, professor of Medicine and Biomedical Sciences and director of the Division of Hematology Oncology. "They can be tested rapidly in the clinic, across multiple disease types, to offer patients results that immunotherapy by itself may not be able to optimally accomplish."
-end-
Note: The research was carried out by a multicenter team that also included investigators from the University of Colorado, including lead study author Megan M. Tu, PhD, and Bristol-Myers Squibb. Theodorescu became director of Cedars-Sinai Cancer in July 2018.

Funding: Research reported in this publication was supported by the Canadian Institute of Health Research Fellowship, the Boettcher Foundation and the National Institutes of Health under award number CA075115.

Disclosure: Theodorescu, Tu and Jason E. Duex, PhD, are inventors on a provisional patent application filed by the University of Colorado and related to this work. (PCT/US2018/043268, filed on 23 July 2018).

Read More on the Cedars-Sinai Blog: Fighting Cancer with the Body's Immune System

URL : http://www.cedars-sinai.org/newsroom/study-finds-way-to-potentially-improve-immunotherapy-for-cancer/

Cedars-Sinai Medical Center

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...