Nav: Home

Russian physicists trained the oscillatory neural network to recognize images

February 20, 2019

Physicists from Petrozavodsk State University have proposed a new method for oscillatory neural network to recognize simple images. Such networks with an adjustable synchronous state of individual neurons have, presumably, a dynamics similar to neurons in the living brain.

Oscillatory neural network is a complex interlacing of interacting elements (oscillators) that are able to receive and transmit oscillations of a certain frequency. Receiving signals of various frequencies from preceding elements, the artificial neuron-oscillator can synchronize its rhythm with these fluctuations. As a result, in the network, some of the elements are synchronized with each other (periodically and simultaneously activated), and other elements are not synchronized. In this manner, a space-time picture of the synchronization distribution is formed. It has commonly been assumed that such processes are responsible for the processing and transmission of information in the human brain, and therefore are of particular interest for the study.

The scientists of the Department of Electronics and Power Engineering of Petrozavodsk State University have set the goal of pattern recognition based on coupled oscillators networks implemented on vanadium dioxide structures. Physicists have developed a synchronization registration method with high sensitivity and selectivity. By applying it in practice, it is possible to create a network capable of recognizing images in the same way that biological neural systems do.

In the study, the input images in the form of 3×3 dimension tables were transmitted to the network by changing the supply currents, and currents changed the oscillation frequencies of oscillators. As a result, the network reacted to each received image in a specific dynamics. The idea of the new method was by selecting key network parameters to train the system to synchronize only for a specific input image, which means to recognize it.

The synchronization state of the output neuron-oscillator relative to the rhythm of the main neuron-oscillator was chosen as the output recorded signal. The authors demonstrated that synchronization can be observed not only at the fundamental frequencies, but also at their multiple parts (subharmonics). An increase in the number of synchronous states due to subharmonics is called a high order synchronization effect. Having simultaneously several states of synchronization, the neuron becomes multilevel neuron. Therefore, an oscillatory network of a small number of neurons can perform complex operations, such as speech, images and video recognition, and be capable of solving prediction, optimization, and control problems.

Using this property, the researchers managed to configure the network in a way that different input images caused different synchronization patterns of the oscillatory network. It was discovered that the network was able to recognize simultaneously up to 14 figures (by 3×3 dimension) out of 102 possible variants, while having only one oscillator at the output.

"In the future, compact neural network chips with nanoscale oscillators can be created on the basis of these networks. The distinctive feature of the neural network technology that we are developing is a fundamentally new information processing system. The effect of high order synchronization of pulsed signals allows utilization of multilevel neurons with a high degree of functionality. The advantage of such oscillatory neural networks is the prospect of creating neural networks using a wide variety of physical oscillators, including magnetic and electrical oscillators. At the same time, the trained network no longer needs computer calculations, and operates independently as a separate neural organism, " says the principle investigator of the research grant, associate professor at Petrozavodsk State University, Andrei Velichko.
-end-


AKSON Russian Science Communication Association

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...