Nav: Home

UBC researchers discover how blood vessels protect the brain during inflammation

February 20, 2019

Researchers from the University of British Columbia have discovered how blood vessels protect the brain during inflammation--a finding that could lead to the development of new treatments for neurodegenerative diseases such as stroke, epilepsy and multiple sclerosis.

In a study published today in the Proceedings of the National Academy of Sciences, the researchers describe how podocalyxin, a protein in blood vessels, plays a key role in preventing harmful blood components from leaking into the brain during inflammation in response to infection or injury.

The discovery marks the first time scientists have understood the function of podocalyxin in the blood-brain barrier--a membrane that separates the brain from blood circulating in the rest of the body and that is essential for maintaining healthy brain function. Disruption of this barrier is common in neurodegenerative diseases and contributes to disease symptoms.

"These findings are incredibly exciting," said Jessica Cait, the study's lead author and a graduate research student at the Biomedical Research Centre at UBC. "For the first time, we have been able to show that this protein is critical to the integrity of the blood-brain barrier."

To conduct the study, the researchers performed an analysis of the effects of podocalyxin loss in human endothelial cells, as well as in mouse models of inflammation. They were able to show that endothelial cells, which provide the inner tubing of blood vessels, require podocalyxin to strengthen blood vessels. The protein helps generate tight contacts between the cells so that potentially harmful blood components or bacterial and viral toxins can't permeate brain tissue during times of inflammation.

"Until now, the function of this protein was a mystery," said Dr. Michael Hughes, co-lead author and a research associate at the Biomedical Research Centre. "Nobody thought to look at this as something controlling the blood-brain barrier."

The researchers hope their findings will lead to the development of new drugs and treatments for preventing blood-brain barrier breakdown. They have also started manipulating podocalyxin to control opening the blood-brain barrier.

"A significant hindrance to treating neurodegenerative diseases at the moment is that most drugs can't cross the blood-brain barrier," said Dr. Kelly McNagny, the study's senior author and a professor in UBC's department of medical genetics and the School of Biomedical Engineering. "But if we are able to induce transient opening of the blood-brain barrier, that could allow us to deliver treatment directly to brain tissue."
-end-
The study was co-authored by researchers at ICORD in the Blusson Spinal Cord Centre at Vancouver General Hospital, the Centre for Heart and Lung Innovation at St Paul's Hospital, the Djavad Mowafaghian Center for Brain Health and the Life Sciences Institute at UBC, as well as researchers at the University of Alberta. It was supported by funding from the Canadian Institutes of Health Research.

University of British Columbia

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...