Nav: Home

A potential new weapon against deadly brain and soft tissue cancers

February 20, 2020

Researchers at the USC Viterbi School of Engineering have designed a new drug cocktail that kills some types of brain and soft tissue cancers by tricking the cancer cells to behave as if they were starving for their favorite food--glucose. The researchers' findings were recently published in the Journal of Biological Chemistry and may pave the way for targeted cancer treatments with greater efficacy and less harmful side effects.

To design their lethal drug combination, researchers James H. Joly, Alireza Delfarah, Philip S. Phung, Sydney Parrish and Nicholas A. Graham in the Mork Family Department of Chemical Engineering and Materials Science first studied how cell lines from glioblastoma (brain cancer) and sarcoma (soft tissue cancer) respond to glucose starvation. They noticed that cell lines that died following glucose starvation showed a toxic buildup of the amino acid L-cystine. This led the USC team to discover that L-cystine import was causing accumulation of reactive oxygen species, highly toxic molecules that can damage cells. When the team blocked L-cystine import with drugs targeting its transporter, a protein called xCT, the cancer cells survived glucose deprivation.

Theoretically, this indicates that tumors with high xCT levels should die when starved of glucose. However, in a patient, starving cancer cells is not practical because it would mean starving their hosts (human beings). The USC researchers thus sought to kill these glucose- addicted cancer cells by designing a drug combination that mimicked the starvation-induced state. By simultaneously inhibiting a glucose transporter and an enzyme that metabolizes L-cystine, the authors found that they could set into motion metabolic processes imitating glucose deprivation, thereby forcing the cancer cells to die--even when glucose is present.

Current treatments for glioblastoma and sarcoma have limited efficacy due to acquired resistance, in which the cancer relapses by acquiring drug resistance. The use of drug combinations is thought to reduce the incidence of acquired resistance and might result in prolonged remission. In addition, the new combination of drugs might have fewer side effects since the drugs individually should have low toxicity towards non-cancerous cells. This differs from traditional chemotherapies that indiscriminately target rapidly growing cells, which results in death of many non-cancerous cells and causes side effects such as hair loss and nausea.

Moving forward, the USC Viterbi engineers are planning to partner with medical researchers from the Keck School of Medicine at USC to test this combination therapy in patient samples and mouse models of glioblastoma.
-end-


University of Southern California

Related Cancer Cells Articles:

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.
Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.
Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.
Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.
Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.
New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.