MicroRNA exhibit unexpected function in driving cancer

February 20, 2020

PHILADELPHIA -- Researchers long thought that only one strand of a double-stranded microRNA can silence genes. Though recent evidence has challenged that dogma, it's unclear what the other strand does, and how the two may be involved in cancer. New research from Thomas Jefferson University has revealed that both strands of some microRNA coordinate to act on the same cancer pathways, across multiple cancers, to drive aggressiveness and growth - two hallmarks of poor prognosis for cancer patients.

"This coordination of activity is really surprising," says senior author Christine M. Eischen, PhD, professor and Vice Chair of the department of Cancer Biology at Jefferson and co-leader of the Molecular Biology and Genetics program at the Sidney Kimmel Cancer Center (SKCC) - Jefferson Health. "We know that the strands don't hit the same target sequences. But despite that fact, we see that they are working together."

Researchers have not paid much attention to the both sides of microRNA, in part because reagents created to probe microRNAs were aimed at only one strand, "so as a field, we weren't looking at the whole picture," says Dr. Eischen.

The work was published in Nature Communications, February 20th, 2020.

First author Ramkrishna Mitra, PhD, a Research Instructor in Dr. Eischen's lab, started by using a computational approach that allowed him to search for both strands of the microRNA. "Our data showed that one strand of many of the pairs were not degraded as previously thought. We saw large numbers of both pairs in many cancers," says Dr. Mitra.

Looking at data from 5200 cancer patient samples from 14 cancer types, the researchers found 26 microRNA pairs that both appeared either more active and abundant or less active and abundant across multiple cancers.

"We then narrowed our search for the biggest effects," says Eischen. Dr. Mitra developed a new computational biology approach, in part, through the analysis of the genes essential for cancer cell survival and growth across 290 cancer cell lines to identify the pathways both microRNA pairs impacted across multiple cancer types. The researchers also determined which microRNA pairs had a bigger impact on driving or suppressing cancer growth together than either strand alone.

They found two pairs, named miR-30a and miR-145 that fit the bill. "Each pair has different target genes, but the targets hit the same cancer pathways," says Dr. Eischen. "These microRNAs help keep cancers in check - as seen both in patient data and in tumor cell lines. As a result, many cancers, such as kidney, lung, breast, become more aggressive when they lose these microRNAs and this impacts patient survival."

To validate the findings of their computational work, the researchers replicated what they found using an experimental approach. They forced expression of miR-145 and miR-30a in lung cancer cell lines, which reduced the cancer's aggressive traits, specifically its growth and migration.

"The SKCC has a longstanding history of discovery related to small RNA function in cancer, and Dr. Eischen's breakthroughs have significant potential for understanding both tumor development and tumor progression," says Karen Knudsen, PhD, Executive Vice President of Oncology Services at Jefferson Health, and the Enterprise Director of the Sidney Kimmel Cancer Center - Jefferson Health, one of only 71 NCI-designated cancer centers in the US.
Support for this study was provided by NCI R01CA177786, the Pellini Foundation, the Herbert A. Rosenthal endowed chair, NCI Cancer Center core grant P30CA056036 that supports the MetaOmics core facility and the Sidney Kimmel Cancer Center.

Article Reference: Ramkrishna Mitra, Clare M. Adams, Wei Jiang, Evan Greenawalt, and Christine M. Eischen, "Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival," Nature Communications, DOI: 10.1038/s41467-020-14713-2, 2020.

Media Contact: Edyta Zielinska, 215-955-7359, edyta.zielinska@jefferson.edu.

Thomas Jefferson University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.