Nav: Home

A scaffold at the center of our cellular skeleton

February 20, 2020

All animal cells have an organelle called a centrosome, which is essential to the organization of their cell skeleton. The centrosome plays fundamental roles, especially during cell division, where it allows equal sharing of genetic information between two daughter cells. When the cells stop dividing, the centrioles, cylindrical structures composed of microtubules at the base of the centrosome, migrate to the plasma membrane and allow the formation of primary and mobile cilia, which are used respectively for the transfer of information and the genesis of movement. While performing these crucial biological functions, centrioles are therefore subjected to many physical forces, which they must resist. Scientists from the University of Geneva (UNIGE) have discovered an internal structure at the center of these nano-cylinders, a real cellular scaffolding that maintains the physical integrity of this organelle. This study, published in the journal Science Advances, will provide a better understanding of the functions of the centriole and the pathologies associated with its dysfunction.

The centrioles, cylindrical nano-structures, form the centrosome, the main microtubule organizing center of the cell skeleton, and the cilia, real cellular antennas. Defects in the assembly or functioning of the centriole can lead to pathologies in humans, such as ciliopathies, retinal disorders that can cause loss of vision.

Super-powered microscopes

Centrioles, formed by microtubules, are components of the cell skeleton. "They have a canonical organization defined by nine triplets of microtubules that must be maintained as a structural unit in order to resist the various forces they face during their cellular functions,» explains Paul Guichard, Professor in the Department of Cell Biology of the Faculty of Science at UNIGE. The group of Paul Guichard and Virginie Hamel, a researcher at the Department of Cell Biology and co-leader of the study, discovered an internal scaffolding for this organelle using high-powered electron microscopes, in collaboration with researchers at the University of Basel and the Helmholtz Campus in Neuherberg, Germany. "This study allowed to analyze centrioles of four different species and to demonstrate that this inner scaffold is present systematically", reports Maeva Le Guennec, a UNIGE researcher and first author of the study.

"We then investigated which centriolar proteins were located in this new structure", says Virginie Hamel. To do this, the UNIGE researchers used an innovative super-resolution method, called expansion microscopy, which makes it possible to inflate cells without deforming them in order to observe their internal organization. Thus, they were able to identify four proteins that are located at the level of this inner scaffold.

Towards a better understanding of retinal degeneration

"We realized that the four proteins we identified are associated with pathologies related to retinal degeneration", notes Virginie Hamel. The loss of retinal photoreceptors is possibly due to a failure to maintain the microtubule doublets present in these specialized cells. "We now intend to discover the possible link between such a structural maintenance defect and retinal disorders, in order to pave the way for a better understanding of this pathology", concludes Paul Guichard.

Université de Genève

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at