Nav: Home

On the trail of cancer stem cells

February 20, 2020

Two research teams from the Max Delbrück Center for Molecular Medicine and their collaborators have produced a detailed cell atlas of an entire salivary gland tumor in a mouse model, mapping individual cells throughout the tumor and its surrounding tissue. The "single cell" approach, recently described in Nature Communications, has provided key insights about cellular composition changes through the earliest stages of cancer development.

A solid tumor is not, as many might assume, a lump of cells that are all the same. Rather it is mix of many different cell types, including a variety of stromal and immune cells besides the actual tumor cells.

"Conventional methods in molecular biology often consider a sample as a whole, which fails to recognize the complexity within it," said Dr. Samantha Praktiknjo, senior scientist and first author from MDC's Systems Biology of Gene Regulatory Elements Lab headed by Professor Nikolaus Rajewsky at the Berlin Institute for Medical Systems Biology (BIMSB). Developing a detailed understanding of the different cells within a tumor and how they interact could help identify more effective treatment strategies.

Strength in numbers

The team used single-cell RNA sequencing technologies developed in the Rajewsky lab and novel epitope profiling to produce the cell atlas, and identified the cells that were specific to the tumor by leveraging the reproducibility and the large sample size of their data.

The latter was possible by using a mouse model, developed in MDC's Signal Transduction in Development and Cancer Lab headed by Professor Walter Birchmeier, which harbors designed mutations that induce a salivary gland squamous cell carcinoma. This system provides a consistent supply of genetically similar tumors to sequence from the earliest stages of development, which is nearly impossible with human patients.

"In a patient, the tumor is already developed and you cannot go back and rewind time and look at how it started," said Dr. Benedikt Obermayer, a co-first author now at the Berlin Institute of Health (BIH). "Here, we have a model that is so controlled, we can watch it happen." And Dr. Qionghua Zhu, the third first author and a former postdoc at the Birchmeier Lab, added: "To fight cancer effectively, we need to find the driver mutations. This method gives us clues about the evolution trajectories of a tumor."

Sequencing technologies have advanced so that it is now possible to quickly and affordably sequence the RNA inside single cells, one at a time, as well as the proteins on the surfaces of cells in the tissues. While other methods grind up the tissue and identify what genes and molecules are present in the mix, the single cell approach precisely identifies how many of each type of cell is present, and which genes and molecules are associated with which cell.

For this study, the researchers sequenced more than 26,000 individual salivary gland cells from mice with tumors and healthy mice. They used computational models to analyze the huge amount of data and identify each individual cell and sort them into groups - such as stromal cells, immune cells, saliva producing cells, cancer cells - based on the hundreds of genes expressed and molecules present.

A surprise

The single cell approach revealed something that surprised the researchers: "When I saw the data, I thought, where is the tumor?" Obermayer said. The population of cancer stem cells in the tumor was extremely small - less than one percent of all profiled cells in the tissue. Due to their low abundance, investigation of these cells still heavily depends on assumptions about surface markers and is often performed in cell culture-based systems. Here, the authors were able to identify the cancer stem cells directly from the solid tumor samples with their single cell approach.

Furthermore, the team was able to predict the progression of the different cell types through different stages of tumor development. Their model suggests that the cancer stem cells emerge from cancerous basal cells, then develop into another subtype before ultimately becoming a population of cells similar to luminal cells, a cell type present in normal, healthy salivary glands.

This progression supports the idea that when something goes awry in the basal cells of this solid tumor model, they are triggered to turn into cancer stem cells, which can then become a different type of cell. "What I found fascinating was clearly seeing the order of signals and events, transitioning from the progenitor to the progeny populations of the cancer stem cells," Praktiknjo said.

Next steps

Further research is required to verify that individual cells are transforming through these stages, and explore the cellular and molecular interactions driving tumor growth. The team anticipates the approach they've demonstrated here can be applied to other cancer types as well.

"To me the main conceptual insight is that we can apply ideas from single-cell based developmental biology to reconstruct molecular progression of tumorigenesis ," said Professor Nikolaus Rajewsky, who heads MDC's Systems Biology of Gene Regulatory Elements Lab and is the scientific director of the BIMSB.
-end-
Press release: Cutting off kidney cancer at its roots

Press release: Single cell technologies for Personalized Medicine

Max Delbrück Center for Molecular Medicine in the Helmholtz Association

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.