Nav: Home

More clues for how the monkeyflower got its spots

February 20, 2020

The monkeyflower, or Mimulus, though possessing a relatively simple genome is able to produce a stunning array of pigmentation patterns. A team of researchers is one step closer to understanding exactly how this genus of wildflowers is able to achieve such remarkable diversity, their work will be published Thursday in Current Biology.

Visual variations such as spots or stripes can act as camouflage and potentially as a means of communication between species throughout nature. The mechanisms that give rise to these variations have stumped not only biologists, but also mathematicians for centuries.

"Patterns are everywhere in nature, not just color patterns but even how leaves are arranged on a stem, really anything with periodicity. Explaining these patterns could be similar in principle and that is what we're hoping to do," says UConn Associate Professor of Ecology and Evolutionary Biology Yaowu Yuan.

In the case of monkeyflowers, colorful anthocyanin spots attract and act as guides to help pollinators home-in on the nectar in the flowers. Alterations of these signal patterns could impact the flower's chance at pollination and seed production, therefor careful regulation of the system is paramount and the researchers were interested in learning about these developmental mechanisms.

Previously, mathematicians developed a theory to try to explain how the patterns of pigmentation may arise, for instance with the stripes on zebras or the spots on leopards. This theory was that there must be some sort of reaction-diffusion effect occurring. It is speculated that the reaction involves an activator-inhibitor system governed by two proteins -- an activator and a repressor. In theory the activator activates itself as well as the repressor. Once the repressor is activated in a pigment cell, there is a reaction-diffusion effect where the repressors fine-tunes pigment production in surrounding cells depending on the concentration of the repressor that diffuses into those cells.

(May include this line as part of a caption) The monkeyflower is a good model organism for studying this phenomena due to the relatively small genome, the fact the genome has been sequenced, but also because the flowers are easy to grow and amenable to experimental manipulations.

The project initially started as two separate projects and the opportunity to collaborate happened almost by chance says Yuan, after seeing a presentation by one of the three co-first authors, Erin Patterson from Ben Blackman's lab at the University of California Berkeley, about a gene that Yuan's group was also working with.

Previously, a gene called Nectar Guide Anthocyanin (NEGAN) was found to be self-regulating and activating anthocyanin production. If the gene is disrupted, no nectar guide spots are formed on the flowers.

The researchers theorize that NEGAN could be the activator component of an activator-inhibitor pair as part of a reaction diffusion mechanism working to control the pigmentation patterns seen in the flowers. The researchers thought the gene both labs were working on independently could be the inhibitor coupled with NEGAN.

If true, according to the reaction-diffusion model if the inhibitor is activated by NEGAN, the inhibitor would diffuse to surrounding cells, inhibit NEGAN function, and thus influence the formation of pigments in those cells.

To test these theories, UConn postdoc Baoqing Ding and UC Berkeley postdoc Srinidhi V. Holalu experimentally altered spot formation in two different species of Mimulus by transgenic manipulation of the candidate inhibitor gene they named red tongue (rto). They also found Mimulus flowers occurring in the wild that had mutations in the same gene.

Through experimentation, the team was able to prove their theoretical predictions about the RTO and NEGAN mechanism. NEGAN activates the expression of the RTO inhibitor, and the RTO inhibitor represses the activity of NEGAN. They also found that RTO is able to move between cells and influence the expression of anthocyanin spot formation through a reaction-diffusion mechanism.

After experimentally manipulating the expression of the genes, the next step was to develop a mathematical model and for this, the team collaborated with Michael Blinov at the Center for Cell Analysis and Modelling at the UConn School of Medicine.

"Now with these computer simulations, we can change parameters, for instance the strength of the inhibitor and achieve different patterns," says Yuan, "We plan to continue working to define parameters of the models to make the model more reflective of the actual biology."

Through strengthening the model parameters, Yuan has hopes for using the model in other experimental organisms one day. With pairing mathematical models with biological systems in this work each helps to validate the other.

The group effort, including the work of the co-first authors Ding, Patterson, and Holalu has really strengthened the research says Yuan.

"This work is the simplest demonstration of the reaction-diffusion theory of how patterns arise in biological systems," says Yuan. We are closer to understanding how these patterns arise throughout nature.
This work was supported by NSF grants IOS-1558083 and IOS-1558035, and NIH grants R01GM131055 R24GM134211, 5R01GM088805, and S10 OD018174.

University of Connecticut

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.