Nav: Home

10,000 times faster calculations of many-body quantum dynamics possible

February 20, 2020

How an electron behaves in an atom, or how it moves in a solid, can be predicted precisely with the equations of quantum mechanics. These theoretical calculations agree fully with the results obtained from experiments. But complex quantum systems, which contain many electrons or elementary particles - such as molecules, solids or atomic nuclei - can currently not be described exactly, even with the most powerful computers available today. The underlying mathematical equations are too complex, and the computational requirements are too large. A team led by Professor Michael Bonitz from the Institute of Theoretical Physics and Astrophysics at Kiel University (CAU) has now succeeded in developing a simulation method, which enables quantum mechanical calculations up to around 10,000 times faster than previously possible. They have published their findings in the current issue of the renowned scientific journal Physical Review Letters.

Even with extremely powerful computers, quantum simulations take too long

The new procedure of the Kiel researchers is based on one of the currently most powerful and versatile simulation techniques for quantum mechanical many-body systems. It uses the method of so-called nonequilibrium Green functions: this allows movements and complex interactions of electrons to be described with very high accuracy, even for an extended period. However, to date this method is very computer-intensive: in order to predict the development of the quantum system over a ten times longer period, a computer requires a thousand times more processing time.

With the mathematical trick of introducing an additional auxiliary variable, the physicists at the CAU have now succeeded in reformulating the primary equations of nonequilibrium Green functions such that the calculation time only increases linearly with the process duration. Thus, a ten times longer prediction period only requires ten times more computing time. In comparison with the previously-used methods, the physicists achieved an acceleration factor of approximately 10,000. This factor increases further for longer processes. Since the new approach combines two Green functions for the first time, it is called "G1-G2 method".

Temporal development of material properties predictable for the first time

The new calculation model of the Kiel research team not only saves expensive computing time, but also allows for simulations, which have previously been completely impossible. "We were surprised ourselves that this dramatic acceleration can also be demonstrated in practical applications," explained Bonitz. For example, it is now possible to predict how certain properties and effects in materials such as semiconductors develop over an extended period of time. Bonitz is convinced: "The new simulation method is applicable in numerous areas of quantum many-body theory, and will enable qualitatively new predictions, such as about the behaviour of atoms, molecules, dense plasmas and solids after excitation by intense laser radiation."
-end-
Original publication:

Niclas Schlünzen, Jan-Philip Joost, Michael Bonitz, Achieving the Scaling Limit for Nonequilibrium Green Functions Simulations, Physical Review Letters 124, 7, (2020) DOI:

10.1103/PhysRevLett.124.076601 https://link.aps.org/doi/10.1103/PhysRevLett.124.076601

Pictures for download available:

http://www.uni-kiel.de/de/pressemitteilungen/2020/024-Quantenmechanik-1.jpg

Caption: Jan-Philip Joost (left), Professor Michael Bonitz and Niclas Schlünzen succeeded in developing a simulation method, which enables quantum mechanical calculations up to around 10,000 times faster than previously possible.

© Julia Siekmann, Uni Kiel

http://www.uni-kiel.de/de/pressemitteilungen/2020/024-Quantenmechanik-2.png

Caption: Computing time required for the new G1-G2 method (solid line) as a function of the process duration, compared to the traditional method (logarithmic scale).

© Niclas Schlünzen, AG Bonitz

Contact:

Prof. Dr Michael Bonitz
Institute of Theoretical Physics and Astrophysics
Tel.: 0431-880-4122
bonitz@theo-physik.uni-kiel.de
Web: http://www.theo-physik.uni-kiel.de/~bonitz

Details, which are only a millionth of a millimetre in size: this is what the priority research area "Kiel Nano, Surface and Interface Science - KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between physics, chemistry, engineering and life sciences, the priority research area aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at http://www.kinsis.uni-kiel.de

Kiel University

Related Quantum Mechanics Articles:

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.
Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.
Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.
A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.
Fluid mechanics mystery solved
An environmental engineering professor has solved a decades-old mystery regarding the behavior of fluids, a field of study with widespread medical, industrial and environmental applications.
Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
Understanding mechanics and materials though evolution and biomaterials
Studying the evolution of bodily processes millions of years ago as well as the properties of today's biomaterials could improve soft robotics design and inform materials science research.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
More Quantum Mechanics News and Quantum Mechanics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.