Nav: Home

Exploring a genome's 3D organization through a social network lens

February 20, 2020

PITTSBURGH--Computational biologists at Carnegie Mellon University have taken an algorithm used to study social networks, such as Facebook communities, and adapted it to identify how DNA and proteins are interconnected into communities within the cell nucleus.

Jian Ma, associate professor in CMU's Computational Biology Department, said scientists have come to appreciate that DNA, proteins and other components within the nucleus appear to form structurally and functionally important communities. The behavior of these communities may prove key to understanding basic cellular processes and disease mechanisms, such as aging and cancer development.

Figuring out how to identify these communities among the tens of thousands of genes, proteins and other components of the cell is daunting, however. An important factor is proximity - both in terms of genes being controlled by the same regulatory proteins called transcription factors and in terms of spatial arrangement, with the complex folding and packing of DNA putting certain genes close to each other.

In many cases, the relationships are similar to many Facebook communities, with some members located near each other, while others who may be far apart are nevertheless drawn together through shared interests.

In a paper featured on the cover of the February issue of the journal Genome Research, lead authors Dechao Tian, a post-doctoral researcher, and Ruochi Zhang, a Ph.D. student in computational biology, explain how they developed a new algorithm, MOCHI, to subdivide the interwoven nuclear components into communities.

MOCHI was inspired by an algorithm originally developed by the laboratory of computer scientist Jure Leskovec. Beginning as a Ph.D. student at CMU and continuing as a faculty member at Stanford University, Leskovec has specialized in the analysis of large social and information networks.

The MOCHI algorithm looks at the spatial arrangement of all the genes and transcription factor proteins in a nucleus based on genome-wide chromosome interactions and global gene regulatory networks. Viewing this information as a 3D graph, the algorithm looks for certain subgraphs or "motifs," within it. A motif might be, say, a triangular shape, as is typical in social network analysis, or a four-node subgraph, which MOCHI uses for analyzing complex networks in the cell nucleus. The algorithm then clusters, or subdivides, the graph in a way that minimizes disruption of these motifs.

They tested MOCHI by applying it to five different cell types. Just as the original algorithm has proved adept at identifying communities within a large mass of social network data, MOCHI identified what appear to be hundreds of communities within the nuclei of these cell types.

As of yet, the researchers don't know what each community might do, but they say they have reason to believe the subdivisions made by MOCHI are valid. For instance, Ma said that the algorithm identified communities that seem to be common to all of the cell types used in this study. It also identified some communities that appear to be unique to a particular cell type. In addition, Ma said they found "enrichment" of disease related genes within the communities.

Much more work will be necessary to identify the function and behavior of each of these communities, Ma said, but the MOCHI algorithm gives researchers a starting point for study.

"There's a reason why these communities are formed in the nucleus," he said. "We just don't know the formation mechanisms of these communities yet." Understanding them might help researchers delineate fundamental cellular processes and suggest possible ways to better understand disease development.

The researchers also plan to include additional cell nucleus components, such as RNAs and other types of proteins, into their analysis.

In addition to Ma, Tian and Zhang, authors of the paper include Yang Zhang and Xiaopeng Zhu, a research associate and a project scientist, respectively, in the Computational Biology Department. The National Institutes of Health, including its 4D Nucleome Program, and the National Science Foundation supported this research.
-end-


Carnegie Mellon University

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.