Nav: Home

Old carbon reservoirs unlikely to cause massive greenhouse gas release

February 20, 2020

Permafrost in the soil and methane hydrates deep in the ocean are large reservoirs of ancient carbon. As soil and ocean temperatures rise, the reservoirs have the potential to break down, releasing enormous quantities of the potent greenhouse gas methane. But would this methane actually make it to the atmosphere?

Researchers at the University of Rochester--including Michael Dyonisius, a graduate student in the lab of Vasilii Petrenko, professor of earth and environmental sciences--and their collaborators studied methane emissions from a period in Earth's history partly analogous to the warming of Earth today. Their research, published in Science, indicates that even if methane is released from these large natural stores in response to warming, very little actually reaches the atmosphere.

"One of our take-home points is that we need to be more concerned about the anthropogenic emissions--those originating from human activities--than the natural feedbacks," Dyonisius says.

WHAT ARE METHANE HYDRATES AND PERMAFROST?

When plants die, they decompose into carbon-based organic matter in the soil. In extremely cold conditions, the carbon in the organic matter freezes and becomes trapped instead of being emitted into the atmosphere. This forms permafrost, soil that has been continuously frozen--even during the summer--for more than one year. Permafrost is mostly found on land, mainly in Siberia, Alaska, and Northern Canada.

Along with organic carbon, there is also an abundance of water ice in permafrost. When the permafrost thaws in rising temperatures, the ice melts and the underlying soil becomes waterlogged, helping to create low-oxygen conditions--the perfect environment for microbes in the soil to consume the carbon and produce methane.

Methane hydrates, on the other hand, are mostly found in ocean sediments along the continental margins. In methane hydrates, cages of water molecules trap methane molecules inside. Methane hydrates can only form under high pressures and low temperatures, so they are mainly found deep in the ocean. If ocean temperatures rise, so will the temperature of the ocean sediments where the methane hydrates are located. The hydrates will then destabilize, fall apart, and release the methane gas.

"If even a fraction of that destabilizes rapidly and that methane is transferred to the atmosphere, we would have a huge greenhouse impact because methane is such a potent greenhouse gas," Petrenko says. "The concern really has to do with releasing a truly massive amount of carbon from these stocks into the atmosphere as the climate continues to warm."

GATHERING DATA FROM ICE CORES

In order to determine how much methane from ancient carbon deposits might be released to the atmosphere in warming conditions, Dyonisius and his colleagues turned to patterns in Earth's past. They drilled and collected ice cores from Taylor Glacier in Antarctica. The ice core samples act like time capsules: they contain tiny air bubbles with small quantities of ancient air trapped inside. The researchers use a melting chamber to extract the ancient air from the bubbles and then study its chemical composition.

Dyonisius's research focused on measuring the composition of air from the time of Earth's last deglaciation, 8,000-15,000 years ago.

"The time period is a partial analog to today, when Earth went from a cold state to a warmer state," Dyonisius says. "But during the last deglaciation, the change was natural. Now the change is driven by human activity, and we're going from a warm state to an even warmer state."

Analyzing the carbon-14 isotope of methane in the samples, the group found that methane emissions from the ancient carbon reservoirs were small. Thus, Dyonisius concludes, "the likelihood of these old carbon reservoirs destabilizing and creating a large positive warming feedback in the present day is also low."

Dyonisius and his collaborators also concluded that the methane released does not reach the atmosphere in large quantities. The researchers believe this is due to several natural "buffers."

BUFFERS PROTECT AGAINST RELEASE TO THE ATMOSPHERE

In the case of methane hydrates, if the methane is released in the deep ocean, most of it is dissolved and oxidized by ocean microbes before it ever reaches the atmosphere. If the methane in permafrost forms deep enough in the soil, it may be oxidized by bacteria that eat the methane, or the carbon in the permafrost may never turn into methane and may instead be released as carbon dioxide.

"It seems like whatever natural buffers are in place are ensuring there's not much methane that gets released," Petrenko says.

The data also shows that methane emissions from wetlands increased in response to climate change during the last deglaciation, and it is likely wetland emissions will increase as the world continues to warm today.

Even so, Petrenko says, "anthropogenic methane emissions currently are larger than wetland emissions by a factor of about two, and our data shows we don't need to be as concerned about large methane releases from large carbon reservoirs in response to future warming; we should be more concerned about methane released from human activities."
-end-
This study was supported by the US National Science Foundation and the David and Lucille Packard Foundation.

University of Rochester

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.