Nav: Home

This study shows how a lack of oxygen during pregnancy can cause schizophrenia

February 20, 2020

The lack of oxygen in the period antipating child birth - a condition that may affect children of pregnant women subjected to a high blood pressure disorder called pre-eclampsia - has been pointed as was one of the causes of schizophrenia. In an article published in Scientific Reports, researchers at Santa Casa de São Paulo Medical School (FCM-SCSP) in Brazil described the way this phenomenon, called hypoxia in the medical jargon, affects astrocytes, one of the most abundant types of brain cells.

In experiments with rat astrocytes, the researchers observed that hypoxia affects the functioning of mitochondria, energy-producing organelles in cells. This study paves the way for the future development of therapies to halt the process which leads to mitochondria dysfunction, thus preventing damage to the fetal brain in the case of pre-eclampsia.

"We began with astrocytes because they're the most abundant and also because they metabolize neurotransmitters like glutamate, one of the most important and a key factor in schizophrenia. We're now investigating the effect of hypoxia on neurons," said Tatiana Rosado Rosenstock, a professor at FCM-SCSP and principal investigator for the study. "We want to find out what signals a given type of cell sends another to avoid brain damage."

Astrocytes are star-shaped cells and the most prevalent glial cells acting in support and insulation of neurons. Glial cells, which also include oligodendrocytes and microglia, account for 90% of the brain on average. The rest is comprised of neurons. Glia are dynamic cells that regulate the metabolism of the central nervous system, maintain homeostasis, form myelin, supply nutrients to neurons, and mediate the formation of synapses.

Three models

The study was part of a project funded by FAPESP. Its lead author, Luiz Felipe Souza e Silva, undertook the research while preparing for a the master's degree, with scholarship from FAPESP.

The research group at FCM-SCSP used three methods to observe the effect of hypoxia on rat astrocytes. First, they placed the cells in a hypoxic chamber containing no oxygen. Next, they treated the cells with cobalt chloride, which mimics hypoxia.

Finally, they analyzed astrocytes from spontaneously hypertensive rats (SHR), a strain whose fetuses suffer from hypoxia during gestation. These animals displayed behavior equivalent to the symptoms of schizophrenia in humans, who cease to manifest the symptoms in question when given antipsychotic medication.

In cells subjected to different forms of hypoxia, mitochondrial calcium balance was one of the altered variables that drew the researchers' attention.

Positive and negative electrical charges must be in equilibrium for mitochondria to produce energy. Because calcium is positively charged, alterations in calcium levels can lead to an imbalance that may ultimately cause cell death.

Compared with normal astrocytes, those subjected to the three types of hypoxia were found to have lower levels of calcium in the cytosol, the water-based solution in which organelles, proteins and other cell structures float in the space between the membrane and the nucleus.

"This happened precisely because calcium uptake by these cells' mitochondria increased [therefore leaving a much lesser amount of calcium in the cytosol], in an attempt at protection," Rosenstock said. "However, too much mitochondrial calcium leads to unbalanced charges in these organelles, altering membrane potential, electron transport and hence energy production."

In addition, a lack of oxygen disturbs redox homeostasis, which enables cells to combat oxidative stress. Any imbalance between oxidant and antioxidant molecules may also lead to cell death. According to researchers, augmented oxidative stress is another consequence of alterations in calcium levels.

The researchers were intrigued to find that hypoxia increased the quantity of mitochondria in the astrocytes. In the tests, the researchers detected the expression of the gene Pgc1-α, which plays an important role in mitochondrial biogenesis (the creation of new mitochondria).

"In conditions of stress, the cell boosts the number of mitochondria to obtain more energy. The existing mitochondria may not be able to produce enough, given the extension of cell dysfunction," Rosenstock said.

The researchers are now investigating ways to enhance mitochondrial function not only in astrocytes but also in neurons, which are less abundant but vital to normal brain development.

"If hypoxia causes problems in mitochondria, we may one day be able to improve mitochondrial function in cases of pre-eclampsia and avoid schizophrenia," Rosenstock said. "Meanwhile, the best way for expectant mothers to avoid fetal hypoxia is to attend all the required antenatal care sessions and avoid high blood pressure disorders."
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Schizophrenia Articles:

Schizophrenia: When the thalamus misleads the ear
Scientists at the University of Geneva (UNIGE) and the Synapsy National Centre of Competence in Research (NCCR) have succeeded in linking the onset of auditory hallucinations - one of the most common symptoms of schizophrenia - with the abnormal development of certain substructures of a region deep in the brain called the thalamus.
Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.
Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.
New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.
Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.
Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.
Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.
The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.
Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.
Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.
More Schizophrenia News and Schizophrenia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.