Nav: Home

Water reuse could be key for future of hydraulic fracturing

February 20, 2020

Enough water will come from the ground as a byproduct of oil production from unconventional reservoirs during the coming decades to theoretically counter the need to use fresh water for hydraulic fracturing operations in many of the nation's large oil-producing areas. But while other industries, such as agriculture, might want to recycle some of that water for their own needs, water quality issues and the potential costs involved mean it could be best to keep the water in the oil patch.

That is the takeaway from two new studies led by researchers at The University of Texas at Austin.

"We need to first maximize reuse of produced water for hydraulic fracturing," said Bridget Scanlon, lead author on both of the studies and a senior research scientist with the UT Bureau of Economic Geology. "That's really the message here."

The first study was published in Environmental Science and Technology on Feb. 16. It quantifies for the first time how much water is produced with oil and natural gas operations compared with how much is needed for hydraulic fracturing. The authors also projected water demand for hydraulic fracturing needs and produced water over the life of the oil and gas plays, which span decades. A play is a group of oil or natural gas fields controlled by the same geology.

The second study was published in Science of the Total Environment on Feb. 3. It assesses the potential for using the water produced with oil and natural gas in other sectors, such as agriculture. It included researchers from New Mexico State University, The University of Texas at El Paso and Penn State University. It shows that current volumes of produced water are relatively small compared with irrigation water demands and will not solve water scarcity issues.

Dealing with water issues has become increasingly challenging with oil and natural gas development in unconventional shale reservoirs. Operators need significant amounts of water to hydraulically fracture shales to produce oil and natural gas, which can be an issue in areas where water is scarce. And large quantities of water are brought up from the reservoirs as a byproduct of production, posing a whole new set of issues for how to manage the produced water, particularly as science has shown that pumping it back into the deep subsurface is linked to seismic activity in some regions.

The studies can help inform significant public policy debates about water management related to oil and natural gas production in Texas, Oklahoma, New Mexico and other parts of the country, Scanlon said.

"The water volumes that are quoted vary widely. That's why we did this study," she said. "This really provides a quantitative analysis of hydraulic fracturing water demand and produced water volumes."

The research looked at eight major plays across the U.S., including the Permian (Midland and Delaware), Bakken, Barnett, Eagle Ford, Fayetteville, Haynesville, Marcellus and Niobrara plays.

The scientists used historical data from 2009 to 2017 for all plays, and projections were developed for the life of the oil plays based on the technically recoverable oil using current technology. Oil plays produced much more water than natural gas plays, with the Permian Basin producing about 50 times as much water as the Marcellus in 2017. As far as recycling potential for hydraulic fracturing, the research shows that in many cases there's plenty of water that could be put to good use. For instance, in the Delaware Basin, which is part of the larger Permian Basin in Texas, scientists found that projected produced water volumes will be almost four times as great as the amount of water required for hydraulic fracturing.

Managing this produced water will pose a significant challenge in the Delaware, which accounts for about 50% of the country's projected oil production. Although the water could theoretically be used by other sectors, such as agriculture in arid West Texas, scientists said water quality issues and the cost to treat the briny water could be hurdles. In addition, if the water is highly treated to remove all the solids, large volumes of salt would be generated. The salt from the produced water in the Delaware Basin in 2017 alone could fill up to 3,000 Olympic swimming pools.

"The ability to beneficially reuse produced waters in arid and semi-arid regions, which can be water stressed, is not the panacea that we were hoping," said co-author Mark Engle, a professor at The University of Texas at El Paso. "There is definitely potential to do some good, but it will require cautious and smart approaches and policies."
-end-


University of Texas at Austin

Related Natural Gas Articles:

Study of natural gas flaring finds high risks to babies
Researchers from USC and UCLA have found that exposure to flaring -- the burning off of excess natural gas -- at oil and gas production sites is associated with 50% higher odds of preterm birth, compared with no exposure.
Sweet or sour natural gas
Natural gas that contains larger amounts of hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)) is termed sour gas.
Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.
Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.
The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.
Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses
Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.
Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.
UT study shows how to produce natural gas while storing carbon dioxide
New research at The University of Texas at Austin shows that injecting air and carbon dioxide into methane ice deposits buried beneath the Gulf of Mexico could unlock vast natural gas energy resources while helping fight climate change by trapping the carbon dioxide underground.
Hydrogen-natural gas hydrates harvested by natural gas
A recent study has suggested a new strategy for stably storing hydrogen, using natural gas as a stabilizer.
More Natural Gas News and Natural Gas Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.