Nav: Home

Physics tool helps track cancer cell diversity

February 20, 2020

ITHACA, N.Y. - Cancer cells are a wily adversary. One reason the disease outfoxes many potential treatments is because of the diversity of the cancer cell population. Researchers have found this population difficult to characterize and quantify.

A Cornell-led team took a novel, interdisciplinary approach to analyzing the behavior of breast tumor cells by employing a statistical modeling technique more commonly used in physics and economics. The team was able to demonstrate how the diversity, or heterogeneity, of cancer cells can be influenced by their chemical environment - namely, by interactions with a specific protein, which leads to tumor growth.

A research team led by Mingming Wu worked with CNF to fabricate this microfluidic chip containing four identical three-channel devices. The team put breast tumor cells and the chemokine protein CCL19 into each device and then used open-source software to analyze the cancer cell behavior.

The researchers' paper, "Lymphoidal Chemokine CCL19 Promoted the Heterogeneity of the Breast Tumor Cell Motility Within a 3D Microenvironment Revealed by a Lévy Distribution Analysis," published Feb. 14 in Integrative Biology.

"It's pretty tough to treat cancer. A lot of people in the field believe that is because of the diversity in the cancer population," said senior author Mingming Wu, professor of biological and environmental engineering in the College of Agriculture and Life Sciences. "While immune cells are rounded and kind of similar and move in the same way, cancer cells are different in shape and move at different speed. We know that fast movers are very lethal. How would you quantify that heterogeneity?"

Another challenge is that only a few cancer cells move fast and do the most damage, and they're difficult to find.

The effort to track these rare cells is similar to the search for elusive particles being conducted in the lab of co-author Anders Ryd, professor of physics in the College of Arts and Sciences. During a conversation over coffee, Ryd and Wu realized the cancer cell research could incorporate the same type of sophisticated statistical tools that have helped particle physicists understand rare energy phenomena, such as the much-sought Higgs boson.

"What we do in particle physics is really statistical data analysis, trying to figure out what functional forms describe our data," Ryd said. "And in this case here, the interest was to look at the outliers, the cells that migrated further, and characterize that. A lot of the tools that we are using in particle physics lend themselves very well to this analysis."

Wu's Biofluidics Lab worked with the Cornell NanoScale Science and Technology Facility (CNF) to fabricate a microfluidic device with three parallel channels, each roughly the width of a human hair. The team introduced breast tumor cells into the device, along with the chemokine protein CCL19, which is secreted by lymph nodes and is highly expressed in malignant tumor cells.

In order to model the cancer cell trajectories, the team used Root, an open-source software for performing statistical analysis in high-energy physics and in certain economics applications.

The researchers found that the presence of chemokine caused the targeted cancer cells to move faster, and heterogeneity increased.

"It is similar to how we as a society are trying to make the population more diverse, because we know that if the population is diverse, it's more robust, more healthy," Wu said. "I think that cancer is the same way. They are making their population more diverse, more indestructible."

A treatment that inhibits the receptor to CCL19 could potentially decrease the invasiveness of tumor cells, although that might also cause the cancer cells to adopt new, even stealthier strategies to survive, Wu said.

By analyzing how these cells respond to environmental cues - such as chemical gradients, temperature, light intensity and mechanical force - Wu's team hopes to elucidate the underlying principles of biology, which aren't as cut and dried as the fundamental laws of physics.

Her team may borrow a few techniques, too.

"There are a lot of tools in physical science already, because physical science has always been a very quantitative field," Wu said. "It's only recently that quantitative biology is starting to shape up. So I feel like this integration is powerful because you don't have to reinvent the wheel to do this modeling."
-end-
Other contributors included co-lead authors Beum Jun Kim, Ph.D. '04, now a senior engineer at Rheonix, and Pimkhuan Hannanta-anan '12, a faculty member at King Mongkut's Institute of Technology Ladkrabang in Thailand; and Melody Swartz, professor of molecular engineering at the University of Chicago.

The research was supported by the National Cancer Institute, the Swiss National Science Foundation, the Cornell Center on the Microenvironment and Metastasis, the Cornell Nanobiotechnology Center and CNF.

Cornell University

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.