Nav: Home

For 'blade runners' taller doesn't necessarily mean faster

February 20, 2020

Before hitting the track to compete in an officially sanctioned race, some elite Paralympic sprinters must do something most runners would find incredibly unsettling: remove their legs and swap them out with ones that make them shorter.

The unusual mandate results from a recent International Paralympic Committee rule change that lowered the Maximum Allowable Standing Height (MASH) for double, below-the-knee amputees racing in prosthetic legs. The rule, intended to prevent unfair advantages, stems from the long-held assumption that greater height equals greater speed.

But a small, first-of-its kind University of Colorado Boulder study published today in the journal PLOS ONE concludes that isn't the case.

"We found that height makes no difference when it comes to maximum speed," said senior author Alena Grabowski, an assistant professor in the Department of Integrative Physiology an Director of the Applied Biomechanics Lab. "These athletes are having to buy new configurations and go through a lot of hardship and expense for a rule that is not based in science."

For the study, Grabowski and her co-authors recruited five elite sprinters with double below-the-knee amputations for a series of running trials on a treadmill. The runners sampled three different brands of blades, and five different combinations of stiffness and height within each brand for a total of 15 different tests. In each test, they were asked to start at a jog and push themselves to the maximum speed possible. Some achievied speeds as fast as 10.8 meters per second - about a two minute, 30-second per mile pace.

Meanwhile, the researchers measured how the runners' biomechanics and pace changed with each blade configuration.

They found the shape of the prostheses undoubtedly made a difference in speed, with runners achieving maximum speeds about 8% faster in "J-shaped" prostheses - think the sleek carbon-fiber blades Oscar Pistorius used in his famous 2012 Olympic sprint - than in "C-shaped" prostheses. But stiffness and height made no difference in runner speed.

"Biomechanically, the idea makes sense: Longer legs equal longer steps, so you would think you should be able to run faster," said first author Paolo Taboga, an assistant professor of biomechanics at Sacramento State University who worked on the study while a postdoctoral researcher in Grabowski's Applied Biomechanics Lab. "But we found that while you do take longer steps, you cycle your legs slower so in the end the two even out."

That reality probably holds true for runners with biological legs, too. "Being taller does not make you faster," said Grabowski.

The assumption that it does is taking a heavy toll on Paralympic hopefuls.

Since the rule change took effect in January 2018, some athletes have had to spend thousands of dollars on new prostheses and months retraining themselves to run at a shorter height.

Team USA Paralympic sprinter Regas Woods, whose profile states his height as 5'10," had to lower his standing height inches after the change and expressed his discontent on Twitter: "I'm not 5 foot 4. Thanks for making me more disabled."

Olympic hopeful Blake Leeper, a double-below-the-knee amputee vying to compete against runners with biological legs at the 2020 Games, has also been affected, with the International Association of Athletics Federation (IAAF) prohibiting him from racing in the IAAF World Championships in Qatar last fall due, in part, to the fact that his blades hadn't been classified under the new standing-height formula.

Some athletes have suffered injuries while trying to adjust to their shorter blades.

The rule could also effectively exclude amputees whose residual limbs are already long from competing at the Paralympic level, noted co-author Owen Beck, now a postdoctoral fellow at Georgia Institute of Technology.

"We would like to see fair and inclusive rules and regulations, which is the beauty of the Paralympic Games," Beck said.

The authors acknowledge that their sample size of five is small. But so is the pool of double, below-the-knee amputees sprinting at the elite level.

They see the need to do a larger study.

For now, they hope the International Paralympic Committee will take a look at their research and reconsider the height restriction.
-end-


University of Colorado at Boulder

Related Athletes Articles:

How kirigami can help us study the muscular activity of athletes
Scientists devise an elastic and durable skin-contact patch for measuring the electromyographic activity of the palm muscle inspired by ancient Japanese paper crafts.
Study examines attitudes toward transgender athletes
As several states draft legislation that would force student-athletes to play as their gender identified on their birth certificate instead of on a team that matches their gender identity, a team of political scientists investigated underlying factors that drive public opinion on transgender athletes.
The mind-muscle connection: For aesthetes, not athletes?
The 'mind-muscle connection.' Ancient lore for bodybuilders, latest buzz for Instragram fitness followers.
Sudden cardiac arrest in athletes: Prevention and management
It's marathon season, and every so often a news report will focus on an athlete who has collapsed from sudden cardiac arrest.
Vest helps athletes keep their cool
A new cooling vest for sports athletes may ensure everyone can compete safely in sweltering summer conditions such as the upcoming 2020 Summer Olympics, reports a new paper published in Frontiers in Physiology.
Athletes with sickle cell traits are at more risk to collapse: here's why
A genetic variation known to affect sickle cell disease might be the reason why some college football players experience adverse clinical outcomes during periods of extreme physical exertion and others do not.
Experts provide new guidelines to athletes on protein intake
A review led by a sports scientist at the University of Stirling has set out new international guidelines for protein intake in track and field athletes.
3D printed tissues may keep athletes in action
Bioscientists at Rice and the University of Maryland with the Center for Engineering Complex Tissues learn to 3D-print scaffolds that may help heal osteochondral injuries of the sort suffered by many athletes.
Young athletes with shoulder instability might benefit from arthroscopy
Young athletes with shoulder instability are considered to be a high-risk group of patients following arthroscopic shoulder stabilization given the high recurrence rates and lower rates of return to sport, which have been reported in the literature.
Children are as fit as endurance athletes
Researchers discover how young children seem to run around all day without getting tired: their muscles resist fatigue and recover in the same way as elite endurance athletes.
More Athletes News and Athletes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.