Cracking the olfactory code in bees

February 21, 2005

Tastes and smells are evocative and play a crucial role in finding food for many animals. A new study of smell perception in honeybees published in the freely-available online journal PLoS Biology now explains how bees react to a suite of scents, and reveals an olfactory map that shows remarkable correspondence to brain activity.

The researchers, led by Martin Giurfa, first trained thousands of bees to associate a specific chemical, such as the alcohol 1-nonanol, with a sucrose reward. Then the researchers tested the bees' response to a set of different smells, varying in chemical composition. By watching how often the bees responded positively to a particular scent when they'd been trained on another, the researchers could assign perceptual "distances" between pairs of chemicals. Drawing together all these distances, they created a preliminary map of the bees' "perceptual space," similar to how surveyors measure distances between landmarks to map a landscape. From this comparison they found, for example, that the bees generalized more by functional group than by carbon-chain length.

Previously, another group had recorded bees' brain responses to the same pairs of scents, assigning distances within centers of activity for each scent. Giurfa's team compared these two sets of data and found that the perceptual and neural distances correlated well, which suggests there's a species-specific code that ties together the insects' brain and behavior. Future studies should only improve our ability to investigate the correlations between brain and behavior, the authors say. Such studies would go even further toward cracking the codes underlying animals' perception and memory.
-end-
Citation: Guerrieri F, Schubert M, Sandoz J-C, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3(4): e60.

CONTACT:
Martin Giurfa
CRCA -CNRS
Universite Paul Sabatier
118, Route de Narbonne
Toulouse, France 31062
+33-5-61-55-67-33
+33-5-61-55-61-54 (fax)
giurfa@cict.fr

PLEASE MENTION PLoS Biology (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.