Nav: Home

Russian scientists show changes in the erythrocyte nanostructure under stress

February 21, 2019

Various stress effects make an integral part of modern life, and their minimization is of particular relevance. Currently, much attention is being paid to the study of the structural-metabolic and functional status of erythrocytes, since they serve as a kind of "cell dosimeter" to signal stress reactions and the action of facultative and obligatory exogenous and endogenous factors that cause various diseases.

Erythrocytes (red blood cells) make up about 40-45% of the total blood volume of an adult. They are among the most numerous cells in the human body accounting for approximately 10% of the total cell volume of an adult organism. Under the action of oxidative stress, somatic shock, various medicinal substances, xenobiotics and pathologies, erythrocytes may be subjected to damage that triggers their programmed death (eryptosis). The deterioration of the erythron state plays a significant role not only in the specific gas transport function, but also in the regulation of the acid-base state, the water-electrolyte balance, the micro-rheological status of the blood, in immune reactions, in the binding and transfer of infection agents and medicinal substances.

According to Anna Deryugina, Head of Department of Physiology and Anatomy at the Institute of Biology and Biomedicine, Lobachevsky University of Nizhny Novgorod, the study of the state of erythrocytes and early diagnosis of their changes is very important for analyzing the state of microcirculation. Microvasculature disorders are characteristic of a number of diseases, including atherosclerosis, coronary heart disease, and arterial hypertension. Further understanding of the mechanisms behind the changes in the state of erythrocytes under various types of effects will enable the development of optimal treatment regimens for patients and the implementation of timely preventive measures.

A group of scientists from Nizhny Novgorod and Yekaterinburg is currently searching for new methods to analyze the state of cells. One of the promising modern approaches allowing a detailed study of the morphological and functional state of cells is the method of phase-modulation laser interference microscopy, which is used to study the dynamics of changes in the shape of the cell and its structure, as well as the functional state of erythrocytes.

"In our studies, visualization of erythrocytes using phase-modulation laser interference microscopy showed a change in the erythrocyte nanostructure under stress, which was accompanied by the emergence of morphologically altered cells. By constructing phase pictures of erythrocytes (3D models), we were able to estimate the intensity level of oxidative processes, which are inevitable companions of stress," notes Anna Deryugina.

In the course of the research, the relationship between changes in the erythrocyte morphology and modification of the membrane protein-lipid structure was shown, which manifested itself in a change in the electronegativity of the erythrocyte surface. In turn, the analysis of the electrophoretic mobility of erythrocytes, depending on the direction of the process, made it possible to judge about the development of stress with an increase in cytotoxicity or about adaptive changes in the body with genetic damage repair.

"Thus, the analysis of the electrokinetic characteristics of erythrocytes and their visualization can provide a diagnostic criterion for the homeostasis of the organism as a whole. In other words, by using phase-modulation laser interference microscopy, one can quickly visualize membrane deformations and evaluate the state of the cells. This method can be used to diagnose and study the functioning of erythrocytes," concludes Anna Deryugina.

Scientists note that erythrocyte visualization can become a form of rapid diagnosis of the body's condition that can be used successfully in clinical laboratories.
-end-


Lobachevsky University

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
More Stress News and Stress Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...