Nav: Home

How to freeze heat conduction

February 21, 2019

Every day we lose valuable energy in the form of waste heat - in technical devices at home, but also in large energy systems. Part of it could be recovered with the help of the "thermoelectric effect". The heat flow from a hot device to the cold environment can be directly converted into electrical power. To achieve that, however, materials with very special properties are required. They have to be good electrical conductors, but bad thermal conductors - two requirements which are difficult to reconcile.

Researchers all over the world are looking for such materials. Certain materials with a cage-like structure have proved particularly promising, for example clathrates, which are studied at TU Wien. Now, after elaborate investigations, a remarkable effect has been demonstrated, which can explain the particularly low thermal conductivity of these materials.

Prison cells for atoms

"Clathrates are crystals with a very special structure," explains Professor Silke Bühler-Paschen from the Institute of Solid State Physics at the Vienna University of Technology. "Their crystal lattice contains tiny cages in which individual atoms are locked up. These atoms can oscillate back and forth in their single cell, without seeing much of the rest of the crystal."

Heat in a solid is present in the form of vibrations of its atoms. When a crystal is heated, the vibrations get stronger until, at some point, the bonds between the atoms are broken and the crystal melts. "There are two types of vibrations," says Silke Bühler-Paschen. "If neighboring atoms are strongly bound together, then the vibration of one atom can be directly transferred to its neighbors and a heat wave spreads through the material. The stronger the coupling between the atoms, the faster the propagation of the wave and the greater the heat conduction. However, if an atom is only very weakly bound to its neighbors, just like the atom sitting in the clathrate cage, then it is largely independent of the others and the heat wave is extremely slow."

New effect: The Kondo-like phonon scattering

As part of his dissertation with Silke Bühler-Paschen, Matthias Ikeda found out that it is due to a certain interaction between these two kinds of heat wave that clathrates are such good thermal insulators. Matthias Ikeda performed precise and extensive measurements. Series of crystals, each one with slightly different properties, were produced at TU Wien and carefully measured. "In the end, we were able to prove what nobody wanted to believe us at first: there is a hitherto unknown physical effect that suppresses the thermal conductivity - we call it Kondo-like phonon scattering," says Matthias Ikeda.

Due to the crystal structure, an atom in the clathrate cage vibrates preferentially in two specific directions. "When a heat wave arrives, it can - for a short time - enter a kind of bound state with such a vibration. The heat wave changes the oscillation direction of the atom in the clathrate cage", says Silke Bühler-Paschen. "This process slows down the heat wave, and so the heat conductivity is decreased. Even though clathrates conduct electricity, they are good thermal insulators."

Better material for thermoelectrics

This is exactly the combination of material properties which is required in order to use the thermoelectric effect on an industrial scale. Something hot is connected to something cold using the right material, and the energy flow in between can be directly converted into electricity. On the one hand, the material must conduct electrical current, but on the one hand, it should not equilibrate the temperatures by conducting the heat too quickly, otherwise the effect can no longer be used.

"The project was very time-consuming, in addition to numerous experiments, extensive computer simulations had to be developed in order to understand the quantum physical processes behind this effect," says Silke Bühler-Paschen. "But it was worth it: With our concept of Kondo-like phonon scattering, it is now much easier to understand the behavior of clathrates and therefore we can work more purposefully to find the most efficient materials for thermoelectric applications."
-end-
Contact:

Prof. Silke Bühler-Paschen
Institute for Solid State Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T: +43-1-58801-13716
silke.buehler-paschen@tuwien.ac.at

Vienna University of Technology

Related Electricity Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Exploring the conversion of heat to electricity in single molecules
Researchers at Osaka University investigated the influence of the geometry of single-molecule devices on their ability to produce electricity from heat.
Macrophages conduct electricity, help heart to beat
Macrophages have a previously unrecognized role in helping the mammalian heart beat in rhythm.
Buzzing the brain with electricity can boost working memory
Scientists have uncovered a method for improving short-term working memory, by stimulating the brain with electricity to synchronize brain waves.
Environmentally friendly, almost electricity-free solar cooling
Demand and the need for cooling are growing as the effects of climate change intensify.
1 in 5 residents overuses electricity at neighbors' expense
Household electricity use falls by more than 30 percent when residents are obliged to pay for their own personal consumption.
New approach for matching production and consumption of renewable electricity
VTT Technical Research Centre of Finland is coordinating the BALANCE project, which brings together leading European research institutes in the field of electrochemical conversion.
Electricity costs: A new way they'll surge in a warming world
Climate change is likely to increase US electricity costs over the next century by billions of dollars more than economists previously forecast, according to a new study involving a University of Michigan researcher.
Material can turn sunlight, heat and movement into electricity -- all at once
Many forms of energy surround you: sunlight, the heat in your room and even your own movements.
For this metal, electricity flows, but not the heat
Berkeley scientists have discovered that electrons in vanadium dioxide can conduct electricity without conducting heat, an exotic property in an unconventional material.

Related Electricity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...