Nav: Home

Rules of inheritance rewritten in worms

February 21, 2019

The idea that children inherit half of their DNA from each parent is a central tenet of modern genetics. But a team led by KAUST's Christian Frøkjær-Jensen has re-engineered this heredity pattern in roundworms, a commonly used model organism in biology, and created animals with an unusual pedigree that are beginning to help scientists better understand nongenetic modes of inheritance and molecular signaling events between tissues and genomes.

"Being able to produce such populations is a game changer for developmental and genetic studies," says KAUST geneticist Frøkjær-Jensen. "We expect these tools to be of substantial interest to the worm research community, as well as to many colleagues working on other model systems for which this approach may provide paradigm and guidance."

Frøkjær-Jensen and his colleagues describe an easy and reliable way of making these worms. Their method builds on the 2016 work of researchers in Germany, who made a simple tweak to the cytoskeletal structure that forms during cell division. They overexpressed just one gene, GPR-1, which induced faulty sorting of chromosomes in the earliest stage of embryonic development.

This led to mosaic offspring in which certain tissues contained DNA only from mom while other tissues contained DNA only from dad--but the protocol was finicky and unreliable. GPR-1 expression was often lost over time, and the microscopic detailing needed to confirm whether atypical chromosome sorting had occurred was tedious, making it hard to take advantage of the genetic tool.

Frøkjær-Jensen worked with Nobel Prize-winning geneticist Andrew Fire and his lab manager at Stanford University to improve and simplify the German team's technique. They modified the GPR-1 gene to prevent it from being turned off by genomic defense mechanisms, and they developed a more easily tractable system for visually identifying whether worms were mosaic or not.

The researchers created a library of fluorescently marked, GPR-1-overexpressing strains that offer a platform for interrogating the function of any genes of interest. As a proof of concept, they used these toolkit strains to generate worms containing almost no genetic material from their maternal lineage. Only the DNA found in the mitochondria, the subcellular power plants, came from the maternal lineage, while all nuclear DNA came from the paternal lineage--a departure from the way heredity is supposed to work.

In his KAUST lab, Frøkjær-Jensen is now using the strains to design worms with recoded genomes for applications in synthetic biology. As part of the KAUST Environmental Epigenetics Research Program, his lab is also studying how chemical marks that impact gene expression can be passed from one generation to the next, a phenomenon known as transgenerational epigenetic inheritance.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".