Nav: Home

Using E. coli to create bioproducts, like biodiesel, in a cost-effective manner

February 21, 2019

BATON ROUGE - Who knew a potentially deadly bacteria could be used for good?

LSU Mechanical Engineering graduate student Tatiana Mello of Piracicaba, Brazil, is currently working on genetically engineering and optimizing E. coli bacteria to produce bioproducts, like biodiesel, in a cost-effective manner. This undertaking has garnered the attention of many in the engineering and biology fields and has also given her the opportunity to speak about her research at the recent National Biodiesel Conference and Expo in San Diego.

Mello proposes using E. coli bacteria to expand biodiesel production by creating a new type of feedstock.

"The main feedstocks used in the U.S. for biodiesel are soybean and corn oil," she said. "The actual production is enough to feed us, but you have the surplus that nobody knew what to do with, so biodiesel was created. This market is growing and growing. They expect within a few decades, the surplus won't be enough to produce biodiesel. E. coli is cheap and abundant, and you can just genetically modify it to fulfill this need."

Mello's main goal is to create Malonyl-CoA bioproducts, such as biodiesel, plastics, polymers, and pharmaceuticals. Malonyl-CoA is found in bacteria from humans and has important roles in regulating fatty acid metabolism and food intake; it's also an attractive target for drug discovery.

"Malonyl-CoA maximization is the topic of my research because it's a precursor for so many things," she said.

Mello, who has worked on this project for two years, had the privilege of presenting her project at the National Biodiesel Conference and Expo in San Diego last month. Only 12 university-level science majors in the country who are interested in learning about the biodiesel industry receive travel scholarships to attend. However, only four of those students are asked to present their research.

Mello did so as part of the Next Generation Scientists for Biodiesel, of which she is a member. She said attending the conference not only impacted her career and research, but also her understanding of the biodiesel industry.

"I was opened up to a new world after the misconception about the food industry and the biofuel industry competing for cropland was demystified," she said. "The many new concepts, regulations, and issues presented during the fast-paced event prepared me much better for the entire biodiesel business."

After earning her bachelor's degree in biological sciences at the University of Campinas (Unicamp) in São Paulo, Mello decided she needed one more degree in order to apply her scientific knowledge.

"First I got into biology because I was all about studying life," she said. "It fascinated me. When I was finishing my biology degree, I realized I couldn't apply anything to what I was studying. Those were the engineers. I needed bioreactors and machinery. So, I decided to get an engineering degree."

Mello stayed at Unicamp, where she earned her ME degree and then began working for Caterpillar Inc. in Brazil.

"While there, I realized I wanted to combine my two bachelor degrees," Mello said.

She connected with LSU ME Professor Marcio de Queiroz, who is also from Brazil and now serves as her advisor. She also has co-advisors, such as LSU Biological Sciences Professor Grover Waldrop, and says they all work together and have submitted a patent on her project.

Mello is set to graduate from LSU in May and plans to stay in southeast Louisiana, hopefully finding a job in the Baton Rouge area. Of course, it all depends on which company will be open to her new idea.

"We have this method, and it's working, but we need industry partners to scale it up," she said.
-end-
Contact

Josh Duplechain
LSU College of Engineering
225-578-5706
josh@lsu.edu

Libby Haydel
LSU College of Engineering
225-578-4840
ehaydel1@lsu.edu

Ernie Ballard
LSU Media Relations
225-578-5685
eballa1@lsu.edu

Louisiana State University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".