Nav: Home

Quantum dots can spit out clone-like photons

February 21, 2019

CAMBRIDGE, Mass. - In the global quest to develop practical computing and communications devices based on the principles of quantum physics, one potentially useful component has proved elusive: a source of individual particles of light with perfectly constant, predictable, and steady characteristics. Now, researchers at MIT and in Switzerland say they have made major steps toward such a single photon source.

The study, which involves using a family of materials known as perovskites to make light-emitting particles called quantum dots, appears today in the journal Science. The paper is by MIT graduate student in chemistry Hendrik Utzat, professor of chemistry Moungi Bawendi, and nine others at MIT and at ETH in Zurich, Switzerland.

The ability to produce individual photons with precisely known and persistent properties, including a wavelength, or color, that does not fluctuate at all, could be useful for many kinds of proposed quantum devices. Because each photon would be indistinguishable from the others in terms of its quantum-mechanical properties, it could be possible, for example, to delay one of them and then get the pair to interact with each other, in a phenomenon called interference.

"This quantum interference between different indistinguishable single photons is the basis of many optical quantum information technologies using single photons as information carriers," Utzat explains. "But it only works if the photons are coherent, meaning they preserve their quantum states for a sufficiently long time."

Many researchers have tried to produce sources that could emit such coherent single photons, but all have had limitations. Random fluctuations in the materials surrounding these emitters tend to change the properties of the photons in unpredictable ways, destroying their coherence. Finding emitter materials that maintain coherence and are also bright and stable is "fundamentally challenging," Utzat says. That's because not only the surroundings but even the materials themselves "essentially provide a fluctuating bath that randomly interacts with the electronically excited quantum state and washes out the coherence," he says.

"Without having a source of coherent single photons, you can't use any of these quantum effects that are the foundation of optical quantum information manipulation," says Bawendi, who is the Lester Wolfe Professor of Chemistry. Another important quantum effect that can be harnessed by having coherent photons, he says, is entanglement, in which two photons essentially behave as if they were one, sharing all their properties.

Previous chemically-made colloidal quantum dot materials had impractically short coherence times, but this team found that making the quantum dots from perovskites, a family of materials defined by their crystal structure, produced coherence levels that were more than a thousand times better than previous versions. The coherence properties of these colloidal perovskite quantum dots are now approaching the levels of established emitters, such as atom-like defects in diamond or quantum dots grown by physicists using gas-phase beam epitaxy.

One of the big advantages of perovskites, they found, was that they emit photons very quickly after being stimulated by a laser beam. This high speed could be a crucial characteristic for potential quantum computing applications. They also have very little interaction with their surroundings, greatly improving their coherence properties and stability.

Such coherent photons could also be used for quantum-encrypted communications applications, Bawendi says. A particular kind of entanglement, called polarization entanglement, can be the basis for secure quantum communications that defies attempts at interception.

Now that the team has found these promising properties, the next step is to work on optimizing and improving their performance in order to make them scalable and practical. For one thing, they need to achieve 100 percent indistinguishability in the photons produced. So far, they have reached 20 percent, "which is already very remarkable," Utzat says, already comparable to the coherences reached by other materials, such as atom-like fluorescent defects in diamond, that are already established systems and have been worked on much longer.

"Perovskite quantum dots still have a long way to go until they become applicable in real applications," he says, "but this is a new materials system available for quantum photonics that can now be optimized and potentially integrated with devices."

It's a new phenomenon and will require much work to develop to a practical level, the researchers say. "Our study is very fundamental," Bawendi notes. "However, it's a big step toward developing a new material platform that is promising."
-end-
The work was supported by the U.S. Department of Energy, the National Science Foundation, and the Swiss Federal Commission for Technology and Innovation.

ADDITIONAL BACKGROUND

ARCHIVE: Unleashing perovskites' potential for solar cells

ARCHIVE: Nanoparticles open new window for biological imaging

ARCHIVE: Chemists design a quantum-dot spectrometer

Massachusetts Institute of Technology

Related Quantum Dots Articles:

What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.
Towards high quality ZnO quantum dots prospective for biomedical applications
Scientists from Warsaw together with colleagues from Grenoble have moved a step closer to creating stable, high quality colloidal zinc oxide quantum dots (ZnO QDs) for use in modern technologies and nanomedicine.
Controlling the charge state of organic molecule quantum dots in a 2D nanoarray
Australian researchers have fabricated a self-assembled, carbon-based nanofilm where the charge state (ie, electronically neutral or positive) can be controlled at the level of individual molecules.
Modified quantum dots capture more energy from light and lose less to heat
Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.
Using quantum dots and a smartphone to find killer bacteria
A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.
Synthesizing single-crystalline hexagonal graphene quantum dots
A KAIST team has designed a novel strategy for synthesizing single-crystalline graphene quantum dots, which emit stable blue light.
US Naval Research Laboratory 'connects the dots' for quantum networks
Researchers at the US Naval Research Laboratory developed a novel technique that could enable new technologies that use properties of quantum physics for computing, communication and sensing, which may lead to 'neuromorphic' or brain-inspired computing.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
2D gold quantum dots are atomically tunable with nanotubes
Gold atoms ski along boron nitride nanotubes and stabilize in metallic monolayers.
More Quantum Dots News and Quantum Dots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.