Physicists get thousands of semiconductor nuclei to do 'quantum dances' in unison

February 21, 2019

A team of Cambridge researchers have found a way to control the sea of nuclei in semiconductor quantum dots so they can operate as a quantum memory device.

Quantum dots are crystals made up of thousands of atoms, and each of these atoms interacts magnetically with the trapped electron. If left alone to its own devices, this interaction of the electron with the nuclear spins, limits the usefulness of the electron as a quantum bit - a qubit.

Led by Professor Mete Atatüre, a Fellow at St John's College, University of Cambridge, the research group, located at the Cavendish Laboratory, exploit the laws of quantum physics and optics to investigate computing, sensing or communication applications.

Atatüre said: "Quantum dots offer an ideal interface, as mediated by light, to a system where the dynamics of individual interacting spins could be controlled and exploited. Because the nuclei randomly 'steal' information from the electron they have traditionally been an annoyance, but we have shown we can harness them as a resource."

The Cambridge team found a way to exploit the interaction between the electron and the thousands of nuclei using lasers to 'cool' the nuclei to less than 1 milliKelvin, or a thousandth of a degree above the absolute zero temperature. They then showed they can control and manipulate the thousands of nuclei as if they form a single body in unison, like a second qubit. This proves the nuclei in the quantum dot can exchange information with the electron qubit and can be used to store quantum information as a memory device. The findings have been published in Science today.

Quantum computing aims to harness fundamental concepts of quantum physics, such as entanglement and superposition principle, to outperform current approaches to computing and could revolutionise technology, business and research. Just like classical computers, quantum computers need a processor, memory, and a bus to transport the information backwards and forwards. The processor is a qubit which can be an electron trapped in a quantum dot, the bus is a single photon that these quantum dots generate and are ideal for exchanging information. But the missing link for quantum dots is quantum memory.

Atatüre said: "Instead of talking to individual nuclear spins, we worked on accessing collective spin waves by lasers. This is like a stadium where you don't need to worry about who raises their hands in the Mexican wave going round, as long as there is one collective wave because they all dance in unison.

"We then went on to show that these spin waves have quantum coherence. This was the missing piece of the jigsaw and we now have everything needed to build a dedicated quantum memory for every qubit."

In quantum technologies, the photon, the qubit and the memory need to interact with each other in a controlled way. This is mostly realised by interfacing different physical systems to form a single hybrid unit which can be inefficient. The researchers have been able to show that in quantum dots, the memory element is automatically there with every single qubit.

Dr Dorian Gangloff, one of the first authors of the paper and a Fellow at St John's, said the discovery will renew interest in these types of semiconductor quantum dots. Dr Gangloff explained: "This is a Holy Grail breakthrough for quantum dot research - both for quantum memory and fundamental research; we now have the tools to study dynamics of complex systems in the spirit of quantum simulation."

The long term opportunities of this work could be seen in the field of quantum computing. Last month, IBM launched the world's first commercial quantum computer, and the Chief Executive of Microsoft has said quantum computing has the potential to 'radically reshape the world'.

Gangloff said: "The impact of the qubit could be half a century away but the power of disruptive technology is that it is hard to conceive of the problems we might open up - you can try to think of it as known unknowns but at some point you get into new territory. We don't yet know the kind of problems it will help to solve which is very exciting."

St John's College, University of Cambridge

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to