Nav: Home

Hachimoji -- Expanding the genetic alphabet from four to eight

February 21, 2019

A new form of synthetic DNA expands the information density of the genetic code, that likely preserves its capability for supporting life, according to a new study. By expanding the genetic alphabet from four letters to eight, researchers demonstrate the ability to double the information density in DNA. According to the report, the new DNA and RNA-like systems described expand the scope of genetic biopolymers, which may be useful for future synthetic biological applications. What's more, the expanded genetic code system could work with larger, more complex molecular structures. Central to biology is the ability to store, replicate and evolve genetic information. In current genetics, this is facilitated by DNA composed of combinations of 4 base pairs. While previous research has demonstrated the success of synthetic DNA by expanding the genetic code from four to six pairs - Shuichi Hoshika and colleagues test the limitations of molecular information storage by expanding it to eight. Hoshika et al. present hachimoji DNA, an eight (hachi-) letter (-moji) genetic system. They tested the alien GACTZPSB hachimoji DNA and discovered that it not only reproduced the molecular recognition behavior of standard 4-letter DNA, confirming its ability to perform as an informational system, it also met the Schrodinger requirements for a Darwinian system of molecular evolution - a hallmark for supporting life. Furthermore, using an engineered T7 RNA polymerase, the authors were able to demonstrate Hachimoji DNA's ability to be transcribed into RNA.
-end-


American Association for the Advancement of Science

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".