Nav: Home

WVU researcher explores what tumor cells and a healthy retina have in common

February 21, 2019

MORGANTOWN, W.Va.--How is a healthy retina cell like a tumor cell? It hijacks an energy-producing chemical reaction to churn out molecular building blocks. When tumor cells do it, they use the building blocks to make cancer grow and spread. But when retina cells do it, they renew photoreceptor membranes that keep our vision sharp.

West Virginia University researcher Jianhai Du is parsing how the retina accomplishes this feat. His findings are published in the latest edition of the Proceedings of the National Academy of Sciences.

"We eat glucose and use it as a major energy source," said Du, an assistant professor in the School of Medicine's Department of Biochemistry and Department of Ophthalmology and Visual Sciences. Through a multistep chemical process, almost all of the healthy cells in our body fixate on turning this glucose into fuel that mitochondria--essentially, the cells' boiler rooms--can burn for energy. Less than 20 percent of the glucose is used to make raw materials for new cells.

"But in tumor cells, it's almost the opposite," Du said. Tumor cells go out of their way to thwart the chemical reactions that would normally transform glucose into energy. Instead, they turn most of the glucose into cancer's basic components.

"It's like they're building different houses. When you're building houses, you need basic materials like wood and concrete. When cancers grow, they need membranes, lipids, nucleotides."

Retina cells use glucose similarly, only rather than using it to sustain and spread cancer, they use it to generate new photoreceptor outer segments that replace the old, damaged ones.

Du and his research team suspected that a specific protein, called mitochondrial pyruvate carrier 1, played a role in the retina's ability to scrap glucose for photoreceptor parts. MPC1 is crucial to getting a derivative of glucose--called pyruvate--into the cells' "boiler rooms," where it can be burned to power the cell. "But in almost all cancer cells, MPC1 is decreased because the cells do not want to move pyruvate into mitochondria," Du explained.

The scientists used animal models to study if--and how--MPC1 and retinal health were linked. They also tested whether or not the scant amount of pyruvate that does go into the retina's mitochondria is important.

The team removed all of the MPC1 from some of their animal models. In the rest of the models, they left intact. "It turns out, the small amount of glucose that is being used in the mitochondria is critical for mitochondrial function, photoreceptor function and viability," said Du.

The researchers observed that MPC1-deficient models had dramatically impaired vision. Compared to their counterparts with typical MPC1 expression, their photoreceptors functioned less than half as well, at all intensities of light.

The team also found that MPC1 depletion caused retinal degeneration. In addition, it damaged the structure of the retina's mitochondria in "very, very unique ways," Du said.

"One important factor in developing age-related macular degeneration is mitochondria not functioning very well. But people don't know exactly what causes it, and there is still no treatment," he said. Du's research may provide insight into how this poorly understood disease manifests in patients and how doctors can treat it. He and his colleagues are conducting experiments to determine whether fat can be used as an alternative fuel source for retinal mitochondria that can't use glucose properly.

Du also plans to study what happens when MPC1 is blocked on a cell-specific basis. "In this project, we blocked the whole retina. But in the next one, we want to block photoreceptors or glial cells to see how small molecules cross between them. We want to address cell-cell interactions." Such a project could have an impact beyond the diagnosis and treatment of eye diseases. It could even deepen neuroscientists' understanding of how brain cells interact.
-end-


West Virginia University

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.