Nav: Home

With nanopore sensing, VCU physics researchers detect subtle changes in single particles

February 21, 2019

Researchers in Virginia Commonwealth University's Department of Physics have discovered that a technique known as nanopore sensing can be used to detect subtle changes in clusters, or extremely small chunks of matter that are bigger than a molecule but smaller than a solid.

"Nanopores act as extremely small volume sensors that are on the order of a few nanometers a side," said Joseph Reiner, Ph.D., an associate professor of experimental biophysics and nanoscience in the College of Humanities and Sciences. "This size scale allows us to observe when the cluster changes size by a single ligand molecule. The ability to detect these changes in real time -- as they happen -- to a single cluster particle is the new and exciting thing here."

The discovery is described in a paper, "Ligand-induced Structural Changes of Thiolate-capped Gold Nanoclusters Observed with Resistive-pulse Nanopore Sensing," by Reiner and physics professor Massimo F. Bertino, Ph.D., along with VCU students Bobby Cox, Peter Wilkerson and Patrick Woodworth, published in the Journal of the American Chemical Society.

"This is new because there really aren't many ways to detect these changes on a single particle in real time," Reiner said. "This opens the door to observe all kinds of interesting phenomenon on nanosurfaces, which is an area of great interest to many chemists in both applied and pure research areas."

The research sheds new light on the activity of clusters, which are extremely reactive objects and are considered to be interesting for catalysis, or the acceleration of a chemical reaction by a catalyst.

"Understanding how molecules behave on a nanocluster helps [our] understanding of their catalytic properties," Bertino said. "To date, people thought that molecules were kind of stationary on cluster surfaces. Our experiments show that molecules, instead, change their configuration and position at a very fast pace. This opens new perspectives for the chemistry of these things."

The team's findings could lead to exciting new discoveries, Bertino said.

"There are several possible alleys that open now. One is to look at cluster growth. Nobody has a good grasp on how these things come into existence. Another one is to help tune their properties," he said. "To date, people grow these things and make them reactive, but it's not always clear how this happens. Essentially, darts are thrown at the problem and one hopes that one of them sticks. This work allows us to look at a single cluster of a well-defined size and lets us mess with it by varying one parameter at a time."

By getting a better look at these clusters and how they behave, the researchers hope to gain a better understanding of how catalysts could be improved for more efficient drug discovery and synthesis.

About VCU and VCU Health

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 217 degree and certificate programs in the arts, sciences and humanities. Thirty-eight of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 11 schools and three colleges. The VCU Health brand represents the VCU health sciences academic programs, the VCU Massey Cancer Center and the VCU Health System, which comprises VCU Medical Center (the only academic medical center and Level I trauma center in the region), Community Memorial Hospital, Children's Hospital of Richmond at VCU, MCV Physicians and Virginia Premier Health Plan. For more, please vcu.edu and vcuhealth.org.
-end-


Virginia Commonwealth University

Related Physics Articles:

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Physics News and Physics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...