Antidepressant harms baby neurons in lab-grown 'mini-brains'

February 21, 2020

Researchers at Johns Hopkins Bloomberg School of Public Health have demonstrated the use of stem-cell-derived "mini-brains" to detect harmful side effects of a common drug on the developing brain. Mini-brains are miniature human brain models, developed with human cells and barely visible to the human eye, whose cellular mechanisms mimic those of the developing human brain.

The scientists, who will publish their findings on February 21 in Frontiers in Cellular Neuroscience, used the mini-brains to determine that the common antidepressant paroxetine suppresses the growth of synapses, or connection points between neurons, and leads to significant decreases in an important support-cell population. Paroxetine is sold under the brand names Paxil and Seroxat, among others.

Paroxetine, which can cross the placenta in pregnant women, currently comes with a warning against use in early pregnancy, largely due to a known risk of heart and lung defects. Some epidemiological studies also have suggested that paroxetine raises the risk of autism. The new findings are likely to heighten concerns about the effects of this drug, and others in its class, on the developing brain.

The study authors say that the findings suggest that lab-grown mini-brains, which they call BrainSpheres, are a good alternative to traditional animal testing. In particular, they can reveal drugs and other chemicals that are harmful to young brains.

"There's a growing concern that we have an epidemic of neurodevelopmental disorders, including autism, and that these might be caused by exposures to common drugs or other chemicals. However, since traditional animal testing is so expensive, we haven't been able to properly investigate this question," says co-senior author Thomas Hartung, MD, the Doerenkamp-Zbinden Chair and Professor in the Department of Environmental Health and Engineering and director of the Center for Alternatives to Animal Testing at the Bloomberg School.

Hartung and colleagues developed the mini-brains to model early brain development. The tiny clumps of brain tissue are made by taking cells from adult humans, often from their skin, and transforming them into stem cells, and then biochemically nudging the stem cells to develop into young brain cells. The mini-brains form a rudimentary brain-like organization over a period of a few months. Because they are made of human cells, they may be more likely to predict effects on the human brain--and because they can be mass-produced in the lab, they are much cheaper to work with than animals.

A set of animal toxicology tests for a single chemical costs about $1.4 million on average, the authors note, which explains why the vast majority of chemicals used in drugs and other consumer products have never been tested for toxicity. In contrast, toxicity testing using mini-brains costs only a few thousand dollars.

In the new study, the scientists used mini-brains to test for neurodevelopmental effects of paroxetine. It and other antidepressants in its class, known as SSRIs or selective serotonin reuptake inhibitors, are among the world's most commonly prescribed drugs, accounting for at least hundreds of millions of prescriptions annually.

The research team exposed mini-brains to two different concentrations of paroxetine over eight weeks as the clumps of tissue developed. Both concentrations were within the therapeutic range for blood levels of the drug in humans. In the experiments, the researchers also used two different sets of mini-brains, each derived from a different stem cell.

The scientists found that while paroxetine didn't seem to have a significant neuron-killing effect, at the higher concentration it reduced levels of a protein called synaptophysin, a key component and marker of synapses by up to 80 percent. Paroxetine reduced levels of two other synapse-related markers as well. Similarly, the team observed that paroxetine reduced the normal outgrowth of structures called neurites, which eventually develop into the output stalks and root-like input branches of mature neurons. Finally, the researchers noted that paroxetine-exposed mini-brains developed with up to 75 percent fewer oligodendrocytes, the support cells that are crucial for the proper "wiring" of the brain, than controls.

These effects suggest that the drug might hinder the normal formation of interconnections among developing neurons--a result that could conceivably underlie autism or other disorders.

The study also shows the broader potential of mini-brains-based testing to detect adverse effects of drugs on the developing brain.

"In this report, we were able to show that testing with mini-brains can reveal relatively subtle neurodevelopmental effects, not just obvious effects, of a chemical," Hartung says. "Whether paroxetine causes autism has been a decade-long debate, which could not be settled with animal tests or epidemiological analyses. So we see mini-brains as technology for broader assessment of the risks of common drugs and chemicals, including those that might be contributing to the autism epidemic."

Hartung and colleagues recently received a grant from the U.S. Environmental Protection Agency to develop their technology as an alternative to animal testing.
-end-
"Antidepressant Paroxetine exerts developmental neurotoxicity in an iPSC-derived 3D human brain model" was written by Xiali Zhong, Georgina Harris, Lena Smirnova, Valentin Zufferey, Rita de Cássia da Silveira e Sá, Fabiele Baldino Russo, Patricia Cristina Baleeiro Beltrao Braga, Megan Chesnut, Marie-Gabrielle Zurich, Helena Hogberg, Thomas Hartung, and David Pamies.

David Pamies, who was corresponding author of the paper, worked at the Center for Alternatives to Animal Testing during the study and is now at the University of Lausanne.

The study was supported by funding from the European Union's Horizon 2020 research and innovation program (grant No. 487 681002).

Disclosures:

Co-authors Thomas Hartung, Helena Hogberg, and David Pamies are named inventors on a patent by Johns Hopkins University on the production of mini-brains, which is licensed to AxoSim, New Orleans, Louisiana. The co-authors consult for AxoSim and Thomas Hartung is a shareholder.

Johns Hopkins University Bloomberg School of Public Health

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.