Nav: Home

Social isolation during adolescence drives long-term disruptions in social behavior

February 21, 2020

Mount Sinai Researchers find social isolation during key developmental windows drives long term changes to activity patterns of neurons involved in initiating social approach in an animal model.

Corresponding Author: Hirofumi Morishita, MDPhD, together with Schahram Akbarian MDPhD Icahn School of Medicine at Mount Sinai, New York, and other coauthors (first author Lucy Bicks).

Bottom Line: Loneliness is increasingly being recognized as a serious threat to mental health and wellbeing in our society. Our study in an animal model shows that social isolation during adolescence leads to long-term disruptions in social behavior and disruptions to activity patterns of a type of inhibitory neuron in the brain, which are frequently disrupted in psychiatric disorders including Schizophrenia. Activity patterns of these inhibitory neurons are sufficient to rescue social deficits induced by juvenile social isolation.

Results: Social behavior is composed of interactions where mice are actively exploring conspecifics or passively being explored. We find one population of neurons, parvalbumin expressing inhibitory neurons, increases in activity prior to an active, but not a passive social interaction. Brief activity of these neurons is sufficient to promote increased active social behavior. Juvenile social isolation during adolescence disrupts the activity of these neurons, leading to a decoupling of their activity and subsequent active social behavior initiation. Increasing activity of these neurons in adult animals that were socially isolated during adolescence restores normal social behavior.

Why the Research Is Interesting: The findings help us to understand how social experience during key windows of development might shape long term behavioral outcomes through changes to specific circuits in the brain. Understanding how social experience shapes outcomes can help us to overcome social deficits in cases of early life trauma or in neurodevelopmental and psychiatric disorders with social deficits.

Who: Mouse models deprived of social experience during the juvenile period.

When: Mice were deprived of social experience during a juvenile phase and their behavior and physiology were examined in adulthood.

What: The study measured activity of parvalbumin expressing inhibitory neurons during social interaction as well as input drive to these neurons.

How: We measured parvalbumin expressing inhibitory neuron activity during social behavior and manipulated activity of these neurons using advanced technologies.

Study Conclusions: Social experience early in life alters specific patterns of parvalbumin expressing inhibitory neurons in prefrontal cortex. This pattern of activity is essential for active social approach behavior in mice.
-end-
Paper Title: Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.