Nav: Home

Opportunity blows for offshore wind in China

February 21, 2020

Under the Paris Climate Agreement, China committed to rely on renewable resources for 20 percent of its energy needs by 2030. Currently, the country is on track to double that commitment, aiming to hit 40 percent by the next decade. Wind power is critical to achieving that goal. Over the past 20 years, China's wind power capacity has exploded from 0.3 gigawatts to 161 gigawatts.

But, in recent years, that growth has slowed and the hopes for China's wind-powered future have dampened.

Why? Location, location, location.

Populous coastal provinces, including Guangdong and Jiangsu, consume about 80 percent of the nation's total electricity but the vast majority of China's wind capacity comes from land-based wind farms in places like Inner Mongolia, more than a thousand miles away from most major cities.

To make matters worse, recent climate studies have suggested that the weakening land-sea temperature gradient due to global climate change is making historically windy regions, like Inner Mongolia, less windy.

In addition, much of the wind power from those regions isn't being used because of when it's produced. Research has suggested that some 16 percent of total potential wind generation was wasted between 2010 and 2016, costing more $1.2 billion.

If China is to meet and exceed its Paris goal by 2030, it's going to need to find a way to increase its wind capacity.

In a recent study, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Huazhong University of Science and Technology in China, found that offshore wind could be a big part of the solution.

The research is published in Science Advances.

"This is an important new contribution, recognition that China has abundant off-shore wind potential that can be developed and brought on shore to the power hungry coastal provinces at costs competitive with existing coal-fired polluting power plants," said Michael McElroy, the Gilbert Butler Professor of Environmental Studies at SEAS and senior author of the paper.

To calculate the capacity and cost of offshore wind in China, the researchers first identified the regions where offshore wind farms could be built, excluding shipping zones, environmentally protected areas and water depths higher than 60 meters. They calculated the wind speeds in those areas and estimated the hourly capacity for each of the turbines.

They found that the total potential wind power from wind farms built along the Chinese coast is 5.4 times larger than the current coastal demand for power.

The researchers also found that this power would be cost-efficient.

"We estimate offshore wind costs according to a range of values derived from recent offshore wind farm developments," said Peter Sherman, a graduate student at the department of Earth and Planetary Science and first author of the paper. "Offshore wind turbines have historically been prohibitively expensive, but it is clear now that, because of significant technological advances, the economics have changed such that offshore wind could be cost-competitive now with coal and nuclear power in China."

The researchers estimated that if electricity prices are high, offshore wind could provide more than 1,000 terawatt-hours, or about 36 percent of all coastal energy demand. If electricity prices are low, it could provide more than 6,000 terawatt-hours, or 200 percent of total energy demand.

"Our research demonstrates the potential for cost-effective, offshore wind to power coastal regions, reduce greenhouse gas emissions and improve air quality in China," said McElroy.
-end-


Harvard John A. Paulson School of Engineering and Applied Sciences

Related Wind Power Articles:

Supercomputing future wind power rise
First detailed study of scenarios for how wind energy can expand to 20 percent of total US electrical supply by 2030.
Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.
Energy-efficient power electronics -- Gallium oxide power transistors with record values
The Ferdinand-Braun-Institut (FBH) has now achieved a breakthrough with transistors based on gallium oxide (beta-Ga2O3).
The complicated future of offshore wind power in the US
In recent years the US Department of Energy laid out an ambitious plan to grow the US offshore wind sector.
Wind power vulnerable to climate change in India
The warming of the Indian Ocean, caused by global climate change, may be causing a slow decline in wind power potential in India, according to a new study from the Harvard John A.
Solar power -- largest study to date discovers 25 percent power loss across UK
Regional 'hot spots' account for the power slump and these are more prevalent in the North of England than in the south
Large-scale US wind power would cause warming that would take roughly a century to offset
Extracting energy from the wind causes climatic impacts that are small compared to current projections of 21st century warming, but large compared to the effect of reducing US electricity emissions to zero with solar.
Large-scale wind power needs more land, causes more climatic impact than previously thought
In two papers, Harvard University researchers find that the transition to wind or solar power in the United States would require five to 20 times more land area than previously thought, and if such large-scale wind farms were built, would warm average surface temperatures over the continental United States by 0.24 degrees Celsius.
Report confirms wind technology advancements continue to drive down wind energy prices
Wind energy pricing remains attractive, according to an annual report released by the U.S.
Evaluation method for the impact of wind power fluctuation on power system quality
Abrupt changes of wind power generation output are a source of severe damage to power systems.
More Wind Power News and Wind Power Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.