A salt solution for desalinating brine

February 21, 2021

Treating waste brine using a self-cleaning crystallizer that runs on solar power could be an eco-friendly and efficient way to make seawater desalination more sustainable.

In desert regions, seawater desalination provides essential freshwater for drinking and agriculture. A major problem is that the process generates vast quantities of concentrated brine that is often released into nearby lakes and rivers or back into the sea, harming vegetation and marine life. "With tightening environmental regulations and increasing public awareness, there is pressure to treat brine with zero liquid discharge," says Chenlin Zhang, a Ph.D. student in KAUST. This means extracting every last drop of water while leaving behind solid mineral crystals that can be salvaged for other uses.

Crystallization currently requires either expensive corrosion-resistant containers and large amounts of energy to boil the brine or large areas of land as dedicated evaporation ponds. Solar crystallizers that use photothermal materials to convert sunlight into heat are gaining popularity but have limited performance because they accumulate salt crystals, which reduce light absorption at the surface.

To tackle this, a team led by Peng Wang built a three-dimensional crystallizer that separates the photothermal material from the brine using highly conductive aluminum. Sunlight enters the open top of a square column and a photothermal coating on the inside wall transfers heat through an aluminum sheet to the outside walls. A porous membrane wrapped around the outside absorbs brine from a reservoir below and spreads it across the surface. The heat evaporates the water and salt crystals build up on the outside, leaving the inner wall clean.

"Accumulated salt can be easily scraped off by hand or left to build up enough to eventually fall under its own weight," explains Zhang. "Such self-cleaning could be very useful in industrial-scale systems."

Their device performed well on experimental salt solutions, but when tested on water from the Red Sea, evaporation rates slowed almost to zero and magnesium crystals clogged up the pores.

Wang's team resolved this by adding a small amount of nitrilotriacetic acid, a cheap and biodegradable crystallization inhibitor, to the untreated brine. "Our strategy could solve the long-standing issue of salt-scaling in conventional crystallizers and is a promising way to treat brine with zero liquid discharge," says Wang.

When powered by artificial sunlight, their crystallizer treated Red Sea brine continuously for 288 hours, evaporating water at an hourly rate of 2.42 kilograms per square meter of surface. When powered by real sunlight on the rooftop of a residential building at KAUST, it evaporated 48 kilograms of water per day per square meter of surface, despite the hours of darkness.

Wang's team is working on improvements to make their solar-powered crystallizer commercially scalable. "We will also investigate the recovery of useful minerals, such as magnesium and potassium, from the solid salts and reveal the true value of waste brine," he adds.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Salt Articles from Brightsurf:

A salt solution toward better bioelectronics
A water-stable dopant enhances and stabilizes the performance of electron-transporting organic electrochemical transistors.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

New technology helps reduce salt, keep flavor
A new processing technology out of Washington State University called microwave assisted thermal sterilization (MATS) could make it possible to reduce sodium while maintaining safety and tastiness.

The salt of the comet
Under the leadership of astrophysicist Kathrin Altwegg, Bernese researchers have found an explanation for why very little nitrogen could previously be accounted for in the nebulous covering of comets: the building block for life predominantly occurs in the form of ammonium salts, the occurrence of which could not previously be measured.

Salt helps proteins move on down the road
Rice chemists match models and experiments to see how salt modifies surface interactions in chromatography used to separate valuable drug proteins.

Mars once had salt lakes similar to Earth
Mars once had salt lakes that are similar to those on Earth and has gone through wet and dry periods, according to an international team of scientists that includes a Texas A&M University College of Geosciences researcher.

Marathoners, take your marks...and fluid and salt!
Legend states that after the Greek army defeated the invading Persian forces near the city of Marathon in 490 B.C.E., the courier Pheidippides ran to Athens to report the victory and then immediately dropped dead.

Water solutions without a grain of salt
Monash University researchers have developed technology that can deliver clean water to thousands of communities worldwide.

Solving the salt problem for seismic imaging
Automated imaging of underground salt bodies from seismic data could help streamline oil and gas exploration.

Higher salt intake can cause gastrointestinal bloating
A study led by researchers at the Johns Hopkins Bloomberg School of Public Health found that individuals reported more gastrointestinal bloating when they ate a diet high in salt.

Read More: Salt News and Salt Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.